Polynomials		Misha Lavrov
	How to Solve Polynomials: Solutions	
Western PA ARML Practice	January 17, 2016	

1. (ARML 1977) Find the remainder that results when $(x+1)^{5}+(x+2)^{4}+(x+3)^{3}+(x+4)^{2}+(x+5)$ is divided by $x+2$.
The remainder can be obtained by substituting $x=-2$, getting $(-1)^{5}+0^{4}+1^{3}+2^{2}+3=7$.
2. (ARML 1978) Find the smallest root of $(x-3)^{3}+(x+4)^{3}=(2 x+1)^{3}$.

Noting that $(x-3)+(x+4)=(2 x+1)$, the equation has the form $A^{3}+B^{3}=(A+B)^{3}$. Simplifying $(A+B)^{3}-A^{3}-B^{3}=0$ gives $A B(A+B)=0$, so either A, B, or $A+B$ is 0 .
Therefore the roots of the equation are the roots of $x-3=0, x+4=0$, and $2 x+1=0: 3$, -4 , and $\frac{1}{2}$. Of these, -4 is the smallest.
3. (ARML 2010) Compute all ordered pairs of real numbers (x, y) that satisfy both of the equations:

$$
x^{2}+y^{2}=6 y-4 x+12 \quad \text { and } \quad 4 y=x^{2}+4 x+12 .
$$

The second equation gives us $x^{2}=4 y-4 x-12$, which (substituted into the first) gets us to $4 y-4 x-12+y^{2}=6 y-4 x+12$, or $y^{2}+4 y-12=6 y+12$, or $y^{2}-2 y-24=0$. This factors as $(y-6)(y+4)=0$, so $y=-4$ or $y=6$.
When $y=-4$, we have $x^{2}+4 x+12=-16$ from the second equation; $x^{2}+4 x+28=0$ has no real solutions.
When $y=6$, the same equation becomes $x^{2}+4 x+12=24$, or $x^{2}+4 x--12=0$. This factors as $(x-2)(x+6)=0$, so we get the two solutions $(x, y)=(2,6)$ and $(x, y)=(-6,6)$.
4. (ARML 1980) Find the real value of x which satisfies

$$
x^{3}+(x-1)^{3}+(x-2)^{3}+(x-3)^{3}+(x-4)^{3}+(x-5)^{3}=3^{3} .
$$

It's possible that you will just guess $x=3$ and spot that all terms on the left-hand side cancel except $x^{3}=3^{3}$.

If not, $x=3$ can also be found with the rational root theorem. The constant term, when all is simplified, is 252 , which has lots of factors; the leading coefficient is 6 , which doesn't help.
(What might help is the depressing substitution $y=x+\frac{5}{2}$, which produces a polynomial with smaller coefficients; but this doesn't help much.)
5. (ARML 1979) Two of the solutions of

$$
x^{4}-3 x^{3}+5 x^{2}-27 x-36=0
$$

are pure imaginary numbers. Find these two solutions.

Substituting $x=y i$ into the equation gives us
$y^{4}+3 i y^{3}-5 y^{2}-27 y i-36=0 \quad$ Leftrightarrow $\quad\left(y^{4}-5 y^{2}-36\right)+\left(3 y^{3}-27 y\right) i=0$.
So $y^{4}-5 y^{2}-36=0$ and $3 y^{3}-27 y=0$. The first equation factors as $\left(y^{2}+4\right)\left(y^{2}-9\right)=0$, and the second equation factors as $y\left(y^{2}-9\right)=0$, which have the common roots $y= \pm 3$.

Therefore the two pure imaginary solutions are $x= \pm 3$.
6. (ARML 1978) Find the four values of x which satisfy $(x-3)^{4}+(x-5)^{4}=-8$.

The depressing substitution $x=y+4$ gives

$$
(y-1)^{4}+(y+1)^{4}=-8 \quad \Leftrightarrow \quad 2 y^{4}+12 y^{2}+10=0
$$

which factors as $2\left(y^{2}+1\right)\left(y^{2}+5\right)=0$. This has roots $y= \pm i, \pm i \sqrt{5}$, so we get the solutions $x=4+i, 4-i, 4+i \sqrt{5}, 4-i \sqrt{5}$ to the original equation.
7. (ARML 1994) If $x^{5}+5 x^{4}+10 x^{3}+10 x^{2}-5 x+1=10$, and $x \neq-1$, compute the numerical value of $(x+1)^{4}$.
The left-hand side should be recognized as $(x+1)^{5}-10 x$, since almost all the coefficients are positive binomial coefficients. Then we have $(x+1)^{5}=10 x+10=10(x+1)$. Having $x \neq-1$ allows us to divide both sides by $x+1$, obtaining $(x+1)^{4}=10$.
8. (ARML 1991) If $\left(x^{2}+x+1\right)\left(x^{6}+x^{3}+1\right)=\frac{10}{x-1}$, compute the real value of x.

Multiplying both sides by $x-1$ lets us simplify $\left(x^{2}+x+1\right)(x-1)$ to $x^{3}-1$ and then $\left(x^{6}+x^{3}+1\right)\left(x^{3}-1\right)$ to $x^{9}-1$, getting $x^{9}-1=10$, or $x^{9}=11$. This has only one real root: $x=\sqrt[9]{11}$.
9. We have

$$
\begin{aligned}
& x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y+x^{n-3} y^{2}+\cdots+x y^{n-2}+y^{n-1}\right) \\
& x^{n}+y^{n}=(x+y)\left(x^{n-1}-x^{n-2} y+x^{n-3} y^{2}-\cdots-x y^{n-2}+y^{n-1}\right)
\end{aligned}
$$

(the second only when n is odd).
10. (ARML 1987) The equation $x^{4}-3 x^{3}-6=0$ has exactly two real roots, r and s. Compute $\lfloor r\rfloor+\lfloor s\rfloor$.

Since we only need to know the floor of the roots, it suffices to figure evaluate the function $f(x)=x^{4}-3 x^{3}-6=0$ at a few integer coordinates:

x	-2	-1	0	1	2	3	4
$f(x)$	34	-2	-6	-8	-14	-6	58

There is a sign change from $x=-2$ to $x=-1$, and another sign change from $x=3$ to $x=4$. Therefore both intervals contain a root, and $\lfloor r\rfloor+\lfloor s\rfloor=-2+3=1$.
11. (ARML 1992) Compute the positive integer value of k that makes the following statement true:

For all positive integers a, b, and c that make the roots of $a x^{2}+b x+c=0$ rational, the roots of $4 a x^{2}+12 b x+k c=0$ will also be rational.

If $a x^{2}+b x+c=0$ has rational roots, so does $a(x / 3)^{2}+b(x / 3)+c=0$, or $\frac{1}{9} a x^{2}+\frac{1}{3} b x+c=0$. This has the same roots as $36\left(\frac{1}{9} a x^{2}+\frac{1}{3} b x+c\right)=0$, or $4 a x^{2}+12 b x+36 c=0$.
Therefore the statement is true for $k=36$.
12. (ARML 2000) Let $f(x)=(x-1)(x-2)^{2}(x-3)^{3} \cdots(x-1999)^{1999}(x-2000)^{2000}$. Compute the number of values of x for which $|f(x)|=1$.

What, you thought I would tell you everything?

