Polynomials	Misha Lavrov
How to Solve Polynomials	
Western PA ARML Practice	January 17, 2016

Warm-up

(ARML 1990) Compute $\frac{1990^{3}-1000^{3}-990^{3}}{1990 \cdot 1000 \cdot 990}$.

Facts to know

Remainder theorem. If $f(x)$ is a polynomial with $f(a)=r$, then $f(x)$ can be written as $(x-a) g(x)+r$ for some polynomial g.

Rational root theorem. All the rational solutions to the polynomial equation

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

(with integer coefficients $a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}$) have the form $\pm \frac{p}{q}$, where p is a divisor of a_{0} and q is a divisor of a_{n}.

Depressed polynomial. Often it is easier to solve a polynomial equation

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

by first making the substitution $x=y-\frac{a_{n-1}}{n \cdot a_{n}}$. When you expand, this should result in an equation with no y^{n-1} term.
(This is not always useful, but it occasionally manages to sidestep a number of other "clever tricks". It works best when $\frac{a_{n-1}}{n \cdot a_{n}}$ is an integer, for obvious reasons.)
Useful identities. The following factorizations and expansions are good to know, at a minimum:

$$
\begin{aligned}
x^{2}-y^{2} & =(x+y)(x-y) \\
x^{3}-y^{3} & =(x-y)\left(x^{2}+x y+y^{2}\right) \\
x^{3}+y^{3} & =(x+y)\left(x^{2}-x y+y^{2}\right) \\
(x+y)^{2} & =x^{2}+2 x y+y^{2} \\
(x+y)^{3} & =x^{3}+3 x^{2} y+3 x y^{2}+y^{3} .
\end{aligned}
$$

Horner's method. It is convenient to evaluate a polynomial by writing it in the form

$$
f(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+x\left(a_{3}+\cdots+x\left(a_{n-1}+x a_{n}\right)\right)\right)\right) .
$$

To evaluate, set $b_{n}=a_{n}, b_{n-1}=a_{n-1}+x b_{n}$, and repeat by setting $b_{i}=a_{i}+x b_{i+1}$. Then b_{0} will be equal to $f(x)$.
(Here, b_{i} evaluates the part of $f(x)$ contained inside i layers of parentheses.)

Problems

1. (ARML 1977) Find the remainder that results when $(x+1)^{5}+(x+2)^{4}+(x+3)^{3}+(x+4)^{2}+(x+5)$ is divided by $x+2$.
2. (ARML 1978) Find the smallest root of $(x-3)^{3}+(x+4)^{3}=(2 x+1)^{3}$.
3. (ARML 2010) Compute all ordered pairs of real numbers (x, y) that satisfy both of the equations:

$$
x^{2}+y^{2}=6 y-4 x+12 \quad \text { and } \quad 4 y=x^{2}+4 x+12 .
$$

4. (ARML 1980) Find the real value of x which satisfies

$$
x^{3}+(x-1)^{3}+(x-2)^{3}+(x-3)^{3}+(x-4)^{3}+(x-5)^{3}=3^{3} .
$$

5. (ARML 1979) Two of the solutions of

$$
x^{4}-3 x^{3}+5 x^{2}-27 x-36=0
$$

are pure imaginary numbers. Find these two solutions.
6. (ARML 1978) Find the four values of x which satisfy $(x-3)^{4}+(x-5)^{4}=-8$.
7. (ARML 1994) If $x^{5}+5 x^{4}+10 x^{3}+10 x^{2}-5 x+1=10$, and $x \neq-1$, compute the numerical value of $(x+1)^{4}$.
8. (ARML 1991) If $\left(x^{2}+x+1\right)\left(x^{6}+x^{3}+1\right)=\frac{10}{x-1}$, compute the real value of x.
9. The factorizations of $x^{3} \pm y^{3}$ on the other side of the page have their generalizations.
(a) Similarly to the factorization of $x^{3}-y^{3}$, you can factor $x-y$ out of $x^{n}-y^{n}$ for any n. (Why?) What is the resulting identity?
(b) Similarly to the factorization of $x^{3}+y^{3}$, you can factor $x+y$ out of $x^{n}+y^{n}$ for any odd n. (Why?) What is the resulting identity?
10. (ARML 1987) The equation $x^{4}-3 x^{3}-6=0$ has exactly two real roots, r and s. Compute $\lfloor r\rfloor+\lfloor s\rfloor$.
11. (ARML 1992) Compute the positive integer value of k that makes the following statement true:

For all positive integers a, b, and c that make the roots of $a x^{2}+b x+c=0$ rational, the roots of $4 a x^{2}+12 b x+k c=0$ will also be rational.
12. (ARML 2000) Let $f(x)=(x-1)(x-2)^{2}(x-3)^{3} \cdots(x-1999)^{1999}(x-2000)^{2000}$. Compute the number of values of x for which $|f(x)|=1$.

