How to Not Solve Polynomials: Solutions
Western PA ARML Practice

1. (ARML 1996) The roots of $a x^{2}+b x+c=0$ are irrational, but their calculator approximations are 0.8430703308 and -0.5930703308 . Compute the integers a, b, and c.
We compute $0.843+-0.593 \approx \frac{1}{4}$ and $0.843 \cdot-0.593 \approx-\frac{1}{2}$, so $x^{2}-\frac{1}{4} x-\frac{1}{2}=0$ would work, or $4 x^{2}-x-2=0$ if we want the coefficients to be integers.
2. Let a and b be the roots of $\boldsymbol{x}^{2}-3 x-1=0$.
(a) Find a quadratic equation whose roots are \boldsymbol{a}^{2} and \boldsymbol{b}^{2}.

We have $a^{2}+b^{2}=(a+b)^{2}-2 a b=3^{2}+2=11$, and $a^{2} \cdot b^{2}=(a b)^{2}=1$, so the quadratic equation $x^{2}-11 x+1=0$ works.
(b) Find a quadratic equation whose roots are $\frac{1}{a}$ and $\frac{1}{b}$.

We could compute $\frac{1}{a} \cdot \frac{1}{b}$ and $\frac{1}{a}+\frac{1}{b}$, but easier is to substitute $\frac{1}{x}$ for x and rewrite $\frac{1}{x^{2}}-\frac{3}{x}-1=0$ as $1-3 x-x^{2}=0$, or $x^{2}+3 x-1=0$.
(c) Find a quadratic equation whose roots are $\frac{1}{a+1}$ and $\frac{1}{b+1}$, and use this to compute $\frac{1}{a+1}+\frac{1}{b+1}$.
Similarly, the equation $\left(\frac{1}{x}-1\right)^{2}-3\left(\frac{1}{x}-1\right)-1=0$ will have the right roots; this expands to $3 x^{2}-5 x+1=0$. Here, the sum of the roots is $\frac{5}{3}$.
3. (HMMT 1998) Three of the roots of $x^{4}+a x^{2}+b x+c=0$ are $-2,-3$, and 5 . Find the value of $a+b+c$.

Since the equation has no x^{3} term, the sum of the roots is 0 , so the fourth root must be 0 . The polynomial factors as $x(x+2)(x+3)(x-5)$, which yields -48 when evaluated at $x=1$. But evaluating the polynomial at $x=1$ can also be done in its original form, getting $1+a+b+c$. Therefore $a+b+c=-49$.
4. (AIME 2005) The equation $2^{333 x-2}+2^{111 x+2}=2^{222 x+1}+1$ has three real roots. Find their sum (as a fraction $\frac{m}{n}$).
Let $y=2^{111 x}$; then we have $\frac{1}{4} y^{3}+4 y=2 y^{2}+1$. This is a cubic equation with three roots, whose product is 4 . Therefore if the original equation has roots r_{1}, r_{2}, r_{3}, we have $2^{111\left(r_{1}+r_{2}+r_{3}\right)}=4=2^{2}$, which means $r_{1}+r_{2}+r_{3}=\frac{2}{111}$.
5. (ARML 1983) Let a, b, and c be the sides of triangle $A B C$. If a^{2}, b^{2}, and c^{2} are the roots of the equation $x^{3}-P x^{2}+Q x-R=0$ (where P, Q, and R are constants), express

$$
\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}
$$

in terms of one or more of the coefficients P, Q, and R.

By the Law of Cosines, $c^{2}=a^{2}+b^{2}-2 a b \cos C$, so $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$. Writing similar expressions for $\cos A$ and $\cos B$, we get

$$
\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{b^{2}+c^{2}-a^{2}}{2 a b c}+\frac{a^{2}+c^{2}-b^{2}}{2 a b c}+\frac{a^{2}+b^{2}-c^{2}}{2 a b c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c} .
$$

From the coefficients P, Q, and R, we get $a^{2}+b^{2}+c^{2}=P$ and $a^{2} b^{2} c^{2}=R$, so $\frac{a^{2}+b^{2}+c^{2}}{2 a b c}=\frac{P}{2 \sqrt{R}}$.
6. (AIME 2001) Find the sum of all the roots of the equation $x^{2001}+\left(\frac{1}{2}-x\right)^{2001}=0$.

Though Vieta's formulas can be used here, it's easier to observe that if $x=r$ is a solution, so is $x=\frac{1}{2}-r$. Therefore, the 2000 roots of this degree-2000 equation come in 1000 pairs which add up to $\frac{1}{2}$, and so their sum is 500 .
7. (ARML 2006) The two equations $y=x^{4}-5 x^{2}-x+4$ and $y=x^{2}-3 x$ intersect at four points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right),\left(x_{4}, y_{4}\right)$. Compute $y_{1}+y_{2}+y_{3}+y_{4}$.
Since all four points lie on the second curve, we can write $y_{1}+y_{2}+y_{3}+y_{4}$ as $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+$ $x_{4}^{2}-3\left(x_{1}+x_{2}+x_{3}+x_{4}\right)$.
Moreover, $x_{1}, x_{2}, x_{3}, x_{4}$ are solutions to $x^{4}-5 x^{2}-x+4=x^{2}-3 x$, or $x^{4}-6 x^{2}+2 x+4=0$. So we have $x_{1}+x_{2}+x_{3}+x_{4}=0$, and $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=\left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{2}-2\left(x_{1} x_{2}+\cdots+x_{3} x_{4}\right)=$ $0-2 \cdot-6=12$. Thus, $y_{1}+y_{2}+y_{3}+y_{4}=12$.
8. (ARML 2010) For real numbers α, B, and C, the roots of $T(x)=x^{3}+x^{2}+B x+C$ are $\sin ^{2} \alpha, \cos ^{2} \alpha$, and $-\csc ^{2} \alpha$. Compute $T(5)$.
The coefficient of x^{2} in $T(x)$ is the negative sum of the roots, so we have $\sin ^{2} \alpha+\cos ^{2} \alpha-$ $\csc ^{2} \alpha=-1$. Since $\sin ^{2} \alpha+\cos ^{2} \alpha=1$ for all α, this means $\csc ^{2} \alpha=2$, $\operatorname{so~}^{2} \sin ^{2} \alpha=\cos ^{2} \alpha=\frac{1}{2}$. Therefore $T(x)=\left(x-\frac{1}{2}\right)^{2}(x+2)$, and $T(5)=\left(5-\frac{1}{2}\right)^{2}(5+2)=\frac{567}{4}$.
9. The roots of $x^{3}+3 x^{2}+4 x-11=0$ are a, b, and c. The roots of $x^{3}+r x^{2}+s x+t=0$ are $a+b, b+c$, and $c+a$.
(a) Find \boldsymbol{r}.

We have $a+b+c=-3$, and $r=-(a+b)-(a+c)-(b+c)=-2(a+b+c)=6$.
(b) (AIME 1996) Find \boldsymbol{t}.

Since $a+b+c=-3$, we have $a+b=-c-3, b+c=-a-3$, and $c+a=-b-3$. Since $t=-(a+b)(b+c)(c+a)$, we have $t=(a+3)(b+3)(c+3)$, which is the negative of the original polynomial evaluated at $x=-3$. We conclude $t=23$.
10. (AIME 2004) Let C be the coefficient of x^{2} in the product

$$
(1-x)(1+2 x)(1-3 x)(\cdots)(1+14 x)(1-15 x) .
$$

Find $|C|$.
Equivalently, consider the coefficient of x^{13} in the polynomial $(x-1)(x+2)(x-3)(\cdots)(x+$ $14)(x-15)$. This polynomial has roots $1,-2,3,-4, \ldots,-14,15$, whose sum is 8 and whose sum of squares is 1240 by the well-known formula. So the sum of products of the roots taken two at a time is $\frac{8^{2}-1240}{2}=-588$, giving $|C|=588$.

