Solving recurrences

Misha Lavrov

ARML Practice 2/2/2014

Warm-up / Review

(1) Compute

$$
\prod_{k=2}^{100}\left(1-\frac{1}{k}\right)=\left(1-\frac{1}{2}\right) \times\left(1-\frac{1}{3}\right) \times \cdots \times\left(1-\frac{1}{100}\right) .
$$

(2) Compute

$$
\prod_{k=2}^{100}\left(1-\frac{1}{k^{2}}\right)
$$

Homework: find and solve problem Algebra \#7 from the February 2009 HMMT.

Warm-up / Review

Solutions

(1) Write $1-\frac{1}{k}$ as $\frac{k-1}{k}$. Then the product becomes

$$
\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdots \cdots \frac{98}{99} \cdot \frac{99}{100} .
$$

Except for the 1 and the 100, every number occurs once in the numerator and once in the denominator, so the final answer is $\frac{1}{100}$.
(2) Write $1-\frac{1}{k^{2}}$ as $\frac{k^{2}-1}{k^{2}}=\frac{k-1}{k} \cdot \frac{k+1}{k}$. Then the product becomes

$$
\left(\frac{1}{2} \cdot \frac{3}{2}\right) \cdot\left(\frac{2}{3} \cdot \frac{4}{3}\right) \cdot\left(\frac{3}{4} \cdot \frac{5}{4}\right) \cdots\left(\frac{99}{100} \cdot \frac{101}{100}\right) .
$$

The second factor of each term is the reciprocal of the first factor of the next. Therefore the adjacent factors cancel, leaving only $\frac{1}{2} \cdot \frac{101}{100}=\frac{101}{200}$.

Three methods for solving recurrences
Method 1: Guess and check

Problem

If $a_{n}=2 a_{n-1}+1$ and $a_{0}=0$, find a formula for a_{n}.

Three methods for solving recurrences

Method 1: Guess and check

Problem

If $a_{n}=2 a_{n-1}+1$ and $a_{0}=0$, find a formula for a_{n}.
(1) Find the first few values of a_{n} :

$$
0,1,3,7,15, \ldots
$$

(2) Guess a formula: $a_{n}=2^{n}-1$.
(3) We can prove this:

$$
\left\{\begin{array}{l}
2^{n}-1=2\left(2^{n-1}-1\right)+1 \\
2^{0}-1=0
\end{array}\right.
$$

Three methods for solving recurrences

Method 2: Convert to a sum

Problem

If $a_{n}=2 a_{n-1}+1$ and $a_{0}=0$, find a formula for a_{n}.
(1) Divide by a suitable function for step 2 to work.

$$
\frac{a_{n}}{2^{n}}=\frac{a_{n-1}}{2^{n-1}}+\frac{1}{2^{n}} .
$$

(2) Make a substitution to write the recurrence as

$$
s_{n}=s_{n-1}+\ldots
$$

$$
s_{n}=s_{n-1}+\frac{1}{2^{n}} \quad \text { where } s_{n}=\frac{a_{n}}{2^{n}} .
$$

(3) Solve for s_{n} and reverse the substitution.

$$
s_{n}=0+\sum_{k=1}^{n} \frac{1}{2^{k}}=1-\frac{1}{2^{n}} \quad \Rightarrow \quad a_{n}=2^{n} s_{n}=2^{n}-1
$$

Three methods for solving recurrences

Method 3: Convert to a product

Problem

If $a_{n}=2 a_{n-1}+1$ and $a_{0}=0$, find a formula for a_{n}.
(1) Add or subtract something that makes step 2 work.

$$
a_{n}+1=2 a_{n-1}+2=2\left(a_{n-1}+1\right) .
$$

(2) Make a substitution to write the recurrence as $p_{n}=$? $\cdot p_{n-1}$.

$$
p_{n}=2 p_{n-1} \quad \text { where } p_{n}=a_{n}+1 .
$$

(3) Solve for p_{n} and reverse the substitution.

$$
p_{n}=2^{n} p_{0}=2^{n} \quad \Rightarrow \quad a_{n}=p_{n}-1=2^{n}-1
$$

Exercises

(1) Solve the recurrences:

- $x_{n}=2 x_{n-1}+2^{n}, x_{0}=0$.
- $y_{n}=3 y_{n-1}+2 n-1, y_{0}=0$.
- $z_{n}=3 z_{n-1}^{2}, z_{0}=1$.
(2) In preparation for the next topic, solve the recurrence $a_{n}=a_{n-1}+2 a_{n-2}$ with $a_{0}=2$ and $a_{1}=1$.

Exercises

Solutions: \# 1

We solve x_{n} by the method of sums. Dividing by 2^{n}, we get $\frac{x_{n}}{2^{n}}=\frac{x_{n-1}}{2^{n-1}}+1$. This leads to the recurrence $s_{n}=s_{n-1}+1$, with $s_{0}=0$, where $s_{n}=x_{n} / 2^{n}$. This is easy to solve: $s_{n}=n$. Therefore $x_{n}=n \cdot 2^{n}$.

Exercises

Solutions: \# 1

We solve x_{n} by the method of sums. Dividing by 2^{n}, we get $\frac{x_{n}}{2^{n}}=\frac{x_{n-1}}{2^{n-1}}+1$. This leads to the recurrence $s_{n}=s_{n-1}+1$, with $s_{0}=0$, where $s_{n}=x_{n} / 2^{n}$. This is easy to solve: $s_{n}=n$. Therefore $x_{n}=n \cdot 2^{n}$.

We solve y_{n} by the method of products. Add $n+1$ to both sides and factor to get $y_{n}+n+1=3\left(y_{n-1}+n\right)$. This means that for $p_{n}=y_{n}+n+1$ we have the recurrence $p_{0}=1$ and $p_{n}=3 p_{n-1}$, so $p_{n}=3^{n}$ and therefore $y_{n}=3^{n}-n-1$.

Exercises

Solutions: \# 1

We solve x_{n} by the method of sums. Dividing by 2^{n}, we get $\frac{x_{n}}{2^{n}}=\frac{x_{n-1}}{2^{n-1}}+1$. This leads to the recurrence $s_{n}=s_{n-1}+1$, with $s_{0}=0$, where $s_{n}=x_{n} / 2^{n}$. This is easy to solve: $s_{n}=n$. Therefore $x_{n}=n \cdot 2^{n}$.

We solve y_{n} by the method of products. Add $n+1$ to both sides and factor to get $y_{n}+n+1=3\left(y_{n-1}+n\right)$. This means that for $p_{n}=y_{n}+n+1$ we have the recurrence $p_{0}=1$ and $p_{n}=3 p_{n-1}$, so $p_{n}=3^{n}$ and therefore $y_{n}=3^{n}-n-1$.

Finally, for z_{n}, we take the \log of both sides. The recurrence $z_{n}=3 z_{n-1}^{2}$ becomes $\log _{3} z_{n}=2 \log _{3} z_{n-1}+1$, with $\log _{3} z_{0}=0$.
This is the recurrence we took great pains to solve earlier, so $\log _{3} z_{n}=2^{n}-1$, and therefore $z_{n}=3^{2^{n}-1}$.

Exercises

Solutions: \# 2

One way to approach the two-term recurrence is to begin with the method of products. Add a_{n-1} to both sides; then

$$
a_{n}+a_{n-1}=2 a_{n-1}+2 a_{n-2}=2\left(a_{n-1}+a_{n-2}\right) .
$$

If $p_{n}=a_{n}+a_{n-1}$, we have $p_{n}=2 p_{n-1}$, with $p_{1}=3$. Therefore $p_{n}=\frac{3}{2} \cdot 2^{n}$.

However, this doesn't solve the problem fully: a formula for p_{n} only tells us that

$$
a_{n}=-a_{n-1}+\frac{3}{2} \cdot 2^{n}
$$

Exercises

Solutions: \# 2

One way to approach the two-term recurrence is to begin with the method of products. Add a_{n-1} to both sides; then

$$
a_{n}+a_{n-1}=2 a_{n-1}+2 a_{n-2}=2\left(a_{n-1}+a_{n-2}\right) .
$$

If $p_{n}=a_{n}+a_{n-1}$, we have $p_{n}=2 p_{n-1}$, with $p_{1}=3$. Therefore $p_{n}=\frac{3}{2} \cdot 2^{n}$.

However, this doesn't solve the problem fully: a formula for p_{n} only tells us that

$$
a_{n}=-a_{n-1}+\frac{3}{2} \cdot 2^{n} .
$$

We can solve this by the method of sums. Let $s_{n}=(-1)^{n} a_{n}$; then we have the recurrence $s_{n}=s_{n-1}+\frac{3}{2} \cdot(-2)^{n}$, with $s_{0}=2$.
Therefore $s_{n}=2+\frac{3}{2} \sum_{k=1}^{n}(-2)^{k}=(-2)^{n}+1$.
Finally, because $a_{n}=(-1)^{n} s_{n}$, we get $a_{n}=2^{n}+(-1)^{n}$.

Solving linear recurrences

Recurrences such as $a_{n}=a_{n-1}+2 a_{n-2}$ come up so often there is a special method for dealing with these.
(1) Find all solutions of the form $a_{n}=r^{n}$. We will need to solve a quadratic equation, since $r^{n}=r^{n-1}+2 r^{n-2}$ just means $r^{2}=r+2$. In this case, the solutions are $r=2$ and $r=-1$.
(2) Find a combination of these solutions that satisfies the initial conditions. Here, if $a_{n}=x \cdot 2^{n}+y \cdot(-1)^{n}$, we have

$$
\left\{\begin{array}{l}
x \cdot 2^{0}+y \cdot(-1)^{0}=a_{0}=2, \\
x \cdot 2^{1}+y \cdot(-1)^{1}=a_{1}=1 .
\end{array}\right.
$$

So $a_{n}=2^{n}+(-1)^{n}$.
In general, if a_{n} is a linear combination of a_{n-1}, \ldots, a_{n-k}, we'd have to solve a degree- k polynomial to get what we want.

Example of solving linear recurrences

The Fibonacci numbers are defined by $F_{0}=0, F_{1}=1$, $F_{n}=F_{n-1}+F_{n-2}$. Find a formula for F_{n}.

Example of solving linear recurrences

The Fibonacci numbers are defined by $F_{0}=0, F_{1}=1$, $F_{n}=F_{n-1}+F_{n-2}$. Find a formula for F_{n}.
(1) To find the exponential solutions, we solve $r^{2}=r+1$ to get $r=\frac{1 \pm \sqrt{5}}{2}$. Call these two solutions ϕ_{1} and ϕ_{2}.

Example of solving linear recurrences

The Fibonacci numbers are defined by $F_{0}=0, F_{1}=1$, $F_{n}=F_{n-1}+F_{n-2}$. Find a formula for F_{n}.
(1) To find the exponential solutions, we solve $r^{2}=r+1$ to get $r=\frac{1 \pm \sqrt{5}}{2}$. Call these two solutions ϕ_{1} and ϕ_{2}.
(2) Now we know $F_{n}=x \phi_{1}^{n}+y \phi_{2}^{n}$. To find x and y, we solve:

$$
\left\{\begin{array} { l }
{ F _ { 0 } = x \phi _ { 1 } ^ { 0 } + y \phi _ { 2 } ^ { 0 } , } \\
{ F _ { 1 } = x \phi _ { 1 } ^ { 1 } + y \phi _ { 2 } ^ { 1 } . }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x+y=0, \\
\left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right) x+\left(\frac{1}{2}-\frac{\sqrt{5}}{2}\right) y=1 .
\end{array}\right.\right.
$$

Example of solving linear recurrences

The Fibonacci numbers are defined by $F_{0}=0, F_{1}=1$,
$F_{n}=F_{n-1}+F_{n-2}$. Find a formula for F_{n}.
(1) To find the exponential solutions, we solve $r^{2}=r+1$ to get $r=\frac{1 \pm \sqrt{5}}{2}$. Call these two solutions ϕ_{1} and ϕ_{2}.
(2) Now we know $F_{n}=x \phi_{1}^{n}+y \phi_{2}^{n}$. To find x and y, we solve:

$$
\left\{\begin{array} { l }
{ F _ { 0 } = x \phi _ { 1 } ^ { 0 } + y \phi _ { 2 } ^ { 0 } , } \\
{ F _ { 1 } = x \phi _ { 1 } ^ { 1 } + y \phi _ { 2 } ^ { 1 } . }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x+y=0, \\
\left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right) x+\left(\frac{1}{2}-\frac{\sqrt{5}}{2}\right) y=1 .
\end{array}\right.\right.
$$

(3) So $x=\frac{1}{\sqrt{5}}, y=-\frac{1}{\sqrt{5}}$, and

$$
F_{n}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\sqrt{5}}
$$

One thing that can go wrong

Consider the recurrence $a_{n}=4 a_{n-1}-4 a_{n-2}$, with $a_{0}=0$ and $a_{1}=2$. What goes wrong? Try to solve this using our previous methods.

One thing that can go wrong

Consider the recurrence $a_{n}=4 a_{n-1}-4 a_{n-2}$, with $a_{0}=0$ and $a_{1}=2$. What goes wrong? Try to solve this using our previous methods.

The problem is that $r^{2}=4 r-4$ only has one solution: $r=2$. But multiples of 2^{n} aren't enough to fit the initial conditions.

One thing that can go wrong

Consider the recurrence $a_{n}=4 a_{n-1}-4 a_{n-2}$, with $a_{0}=0$ and $a_{1}=2$. What goes wrong? Try to solve this using our previous methods.

The problem is that $r^{2}=4 r-4$ only has one solution: $r=2$. But multiples of 2^{n} aren't enough to fit the initial conditions.

Writing $a_{n}-2 a_{n-1}=2\left(a_{n-1}-2 a_{n-2}\right)$ yields the one-term recurrence $a_{n}=2 a_{n-1}+2^{n}$. We have already solved this today; the solution is $a_{n}=n \cdot 2^{n}$.

In general, when a root r is repeated k times, it yields the solutions $a_{n}=r^{n}, a_{n}=n \cdot r^{n}, \ldots, a_{n}=n^{k-1} \cdot r^{n}$, and we solve for their combination as usual. (Here, all solutions to the recurrence are a combination of 2^{n} and $n \cdot 2^{n}$.)

Exercises

(1) Solve the recurrence $x_{n}=2 x_{n-1}+x_{n-2}$ with $x_{0}=x_{1}=1$.
(2) Solve the recurrence $y_{n}=y_{n-1}+2 y_{n-2}+2$ with $y_{0}=0$ and $y_{1}=1$.
(3) Solve the recurrence $z_{n}=z_{n-1}+z_{n-2}-z_{n-3}$ with $z_{0}=1$, $z_{1}=0$, and $z_{2}=3$.

Exercises

Solutions

(1) The characteristic equation is $r^{2}=2 r+1$, which yields $r=1 \pm \sqrt{2}$. Determining the constants, we see that

$$
x_{n}=\frac{(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}}{2}
$$

(2) By a trick analogous to the "method of products", we write $y_{n}+1=\left(y_{n-1}+1\right)+2\left(y_{n-2}+1\right)$. Then $y_{n}+1$ is some combination of 2^{n} and $(-1)^{n}$; from $y_{0}+1=1$ and $y_{1}+1=2$, we can deduce $y_{n}+1=2^{n}$, so $y_{n}=2^{n}-1$.
(3) Here we must first solve the cubic $r^{3}=r^{2}+r-1$, whose three roots are $1,1,-1$. This means z_{n} is a combination of 1 , n, and $(-1)^{n}$. From the initial conditions, we see that $z_{n}=n+(-1)^{n}$.

More math problems

Inspired by 1990 VTRMC, $\# 6$. The sequence $\left(y_{n}\right)$ obeys the recurrence $y_{n}=y_{n-1}\left(2-y_{n-1}\right)$. Solve for y_{n} in terms of y_{0}. 2005 AIME II, \#11. For a positive integer m, let $a_{0}, a_{1}, \ldots, a_{m}$ be a sequence such that $a_{0}=37, a_{1}=72, a_{k+1}=a_{k-1}-\frac{3}{a_{k}}$ for $k=1, \ldots, m-1$, and finally, $a_{m}=0$. Find m.

2007 PUM $\alpha \mathbb{C}$, Algebra A \#7. Two sequences x_{n} and y_{n} are defined by $x_{0}=y_{0}=7$ and

$$
\left\{\begin{array}{l}
x_{n}=4 x_{n-1}+3 y_{n-1} \\
y_{n}=3 y_{n-1}+2 x_{n-1}
\end{array}\right.
$$

Find $\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}$. [Or just solve for x_{n} and y_{n}.]
2011 VTRMC, $\# 2$. The sequence $\left(a_{n}\right)$ is defined by $a_{0}=-1$, $a_{1}=0$, and $a_{n}=a_{n-1}^{2}-n^{2} a_{n-2}-1$. Find a_{100}.

More math problems

Solutions

1990 VTRMC, \#6. Rewrite the recurrence as $1-y_{n}=\left(1-y_{n-1}\right)^{2}$.
It follows that $1-y_{n}=\left(1-y_{0}\right)^{2^{n}}$, so $y_{n}=1-\left(1-y_{0}\right)^{2^{n}}$.
2005 AIME II, \#11. Let $b_{k}=a_{k} a_{k+1}$. From the recurrence, we have $b_{k}=b_{k-1}-3$, with $b_{0}=37 \cdot 72$. So $b_{k}=37 \cdot 72-3 k$. We have $b_{888}=a_{888} a_{889}=0$; but $a_{888} \neq 0$ because $b_{887}=$ $a_{887} a_{888}=3$. Therefore $m=889$.

2007 PUMi α C, Algebra A \#7. Note that $x_{n}-y_{n}=2 x_{n-1}$, so we can write x_{n} as $7 x_{n-1}-6 x_{n-2}$. Solving this, we get
$x_{n}=\frac{42}{5} \cdot 6^{n}-\frac{7}{5}$, so $y_{n}=\frac{28}{5} \cdot 6^{n}+\frac{7}{5}$. In the limit, $\frac{x_{n}}{y_{n}} \rightarrow \frac{42 / 5}{28 / 5}=\frac{3}{2}$.
2011 VTRMC, \#2. From computing the first few terms, we guess that $a_{n}=n^{2}-1$, which is confirmed by induction:

$$
n^{2}-1=\left((n-1)^{2}-1\right)^{2}-n^{2}\left((n-2)^{2}-1\right)-1
$$

