
Complex Numbers Solutions

Joseph Zoller

February 7, 2016

Solutions

1. (2009 AIME I Problem 2) There is a complex number z with imaginary part 164 and a positive
integer n such that

z

z + n
= 4i.

Find n.

[Solution: n = 697]

z

z + n
= 4i =⇒ 1− n

z + n
= 4i =⇒ 1− 4i =

n

z + n
=⇒ 1

1− 4i
=
z + n

n

=⇒ 1 + 4i

17
=
z

n
+ 1

Since their imaginary part has to be equal,

4i

17
=

164i

n
=⇒ n =

(164)(17)

4
= 697 =⇒ n = 697 .

2. (1985 AIME Problem 3) Find c if a, b, and c are positive integers which satisfy
c = (a+ bi)3 − 107i, where i2 = −1.

[Solution: c = 198, where a = 6 and b = 1]

Expanding out both sides of the given equation we have c+ 107i = (a3 − 3ab2) + (3a2b− b3)i.
Two complex numbers are equal if and only if their real parts and imaginary parts are equal, so
c = a3−3ab2 and 107 = 3a2b−b3 = (3a2−b2)b. Since a, b are integers, this means b is a divisor
of 107, which is a prime number. Thus either b = 1 or b = 107. If b = 107, 3a2 − 1072 = 1 so
3a2 = 1072 + 1, but 1072 + 1 is not divisible by 3, a contradiction. Thus we must have b = 1,
3a2 = 108 so a2 = 36 and a = 6 (since we know a is positive). Thus c = 63 − 3 · 6 = 198 .

3. (1995 AIME Problem 5) For certain real values of a, b, c, and d, the equation
x4 +ax3 + bx2 + cx+ d = 0 has four non-real roots. The product of two of these roots is 13 + i
and the sum of the other two roots is 3 + 4i, where i =

√
−1. Find b.

[Solution: b = 051]

Since the coefficients of the polynomial are real, it follows that the non-real roots must come
in complex conjugate pairs. Let the first two roots be m,n. Since m + n is not real, m,n
are not conjugates, so the other pair of roots must be the conjugates of m,n. Let m′ be the
conjugate of m, and n′ be the conjugate of n. Then,

m · n = 13 + i,m′ + n′ = 3 + 4i =⇒ m′ · n′ = 13− i,m+ n = 3− 4i.
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By Vieta’s formulas, we have that b = mm′ + nn′ +mn′ + nm′ +mn+m′n′ = (m+ n)(m′ +

n′) +mn+m′n′ = 051 .

4. (1984 AIME Problem 8) The equation z6 + z3 + 1 = 0 has complex roots with argument θ
between 90◦ and 180◦ in the complex plane. Determine the degree measure of θ.

[Solution: θ = 160◦]

We shall introduce another factor to make the equation easier to solve. If r is a root of
z6 + z3 + 1, then 0 = (r3 − 1)(r6 + r3 + 1) = r9 − 1. Thus, the root we want is also a 9th root
of unity.

This reduces θ to either 120◦ or 160◦. But θ can’t be 120◦ because if r = cos 120◦ + i sin 120◦,

then r6 + r3 + 1 = 3. This leaves θ = 160 .

5. (1994 AIME Problem 8) The points (0, 0) , (a, 11) , and (b, 37) are the vertices of an equilateral
triangle. Find the value of ab.

[Solution: ab = 315]

Consider the points on the complex plane. The point b+37i is then a rotation by 60◦ of a+11i
about the origin, so

(a+ 11i) (cis 60◦) = (a+ 11i)

(
1

2
+

√
3i

2

)
= b+ 37i.

Equating the real and imaginary parts, we have:

b =
a

2
− 11

√
3

2
=⇒ 37 =

11

2
+
a
√

3

2
=⇒ a = 21

√
3 =⇒ b = 5

√
3

Thus, the answer is ab = (21
√

3)(5
√

3) = 315 .

Note: There is another solution where the point b+ 37i is a rotation of −60 degrees of a+ 11i;
however, this triangle is just a reflection of the first triangle by the y-axis, and the signs of a
and b are flipped. However, the product ab is unchanged.

6. (1999 AIME Problem 9) A function f is defined on the complex numbers by f(z) = (a+ bi)z,
where a and b are positive numbers. This function has the property that the image of each
point in the complex plane is equidistant from that point and the origin. Given that |a+bi| = 8
and that b2 = m/n, where m and n are relatively prime positive integers, find m+ n.

[Solution: m+ n = 259, where m = 255 and n = 4]

Plugging in z = 1 yields f(1) = a + bi. This implies that a + bi must fall on the line
Re(z) = 1

2 =⇒ a = 1
2 , given the equidistant rule. By |a + bi| = 8, we get a2 + b2 = 64, and

plugging in a = 1
2 yields b2 = 255

4 . The answer is thus 259 .

7. (2000 AIME II Problem 9) Given that z is a complex number such that z + 1
z = 2 cos 3◦, find

the least integer that is greater than z2000 + 1
z2000 .

[Solution: 000]

Using the quadratic equation on z2 − (2 cos 3)z + 1 = 0, we have z = 2 cos 3±
√
4 cos2 3−4
2 =

cos 3± i sin 3 = cis 3◦.

Using De Moivre’s Theorem we have z2000 = cos 6000◦ + i sin 6000◦, 6000 = 16(360) + 240, so
z2000 = cos 240◦ + i sin 240◦.

We want z2000 + 1
z2000 = 2 cos 240◦ = −1. Finally, the least integer greater than −1 is 000 .
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8. (2005 AIME II Problem 9) For how many positive integers n ≤ 1000 is
(sin t+ i cos t)n = sinnt+ i cosnt true for all real t?

[Solution: 250, where n ∈ 1 + 4Z]

This problem begs us to use the familiar identity eit = cos(t) + i sin(t). Notice that
sin(t) + i cos(t) = i(cos(t)− i sin(t)) = ie−it since sin(−t) = − sin(t). Using this,
(sin(t) + i cos(t))n = sin(nt) + i cos(nt) is recast as (ie−it)n = ie−itn. Hence we must have
in = i ⇒ in−1 = 1 ⇒ n ≡ 1 mod 4. Thus since 1000 is a multiple of 4 exactly one quarter of
the residues are congruent to 1 hence we have 250 .

9. (1990 AIME Problem 10) The sets A = {z : z18 = 1} and B = {w : w48 = 1} are both sets of
complex roots of unity. The set C = {zw : z ∈ A and w ∈ B} is also a set of complex roots of
unity. How many distinct elements are in C?

[Solution: |C| = 144]

The least common multiple of 18 and 48 is 144, so define n = e2πi/144. We can write the
numbers of set A as {n8, n16, . . . n144} and of set B as {n3, n6, . . . n144}. nx can yield at most
144 different values. All solutions for zw will be in the form of n8k1+3k2 .

8 and 3 are relatively prime, and it is well known that for two relatively prime integers a and b,
the largest number that cannot be expressed as the sum of multiples of a and b is (ab− a− b).
For 3, 8, this is 13; however, we can easily see that the numbers 145 to 157 can be written in
terms of 3 and 8. Since the exponents are of roots of unities, they reduce mod 144, so all
numbers in the range are covered. Thus the answer is 144 .

10. (1992 AIME Problem 10) Consider the region A in the complex plane that consists of all points
z such that both z

40 and 40
z have real and imaginary parts between 0 and 1, inclusive. What

is the integer that is nearest the area of A?

[Solution: [A] ≈ 572]

Let z = a+ bi =⇒ z
40 = a

40 + b
40 i. Since 0 ≤ a

40 ,
b
40 ≤ 1 we have the inequality

0 ≤ a, b ≤ 40

which is a square of side length 40.

Also, 40
z = 40

a−bi = 40a
a2+b2 + 40b

a2+b2 i so we have 0 ≤ a, b ≤ a2+b2

40 , which leads to

(a− 20)2 + b2 ≥ 202

a2 + (b− 20)2 ≥ 202

We graph them:
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We want the area outside the two circles but inside the square. Doing a little geometry, the

area of the intersection of those three graphs is 402 − 402

4 −
1
2π202 = 1200 − 200π ≈ 571.68.

Thus, by rounding to the nearest integer we get 572 .

11. (1988 AIME Problem 11) Let w1, w2, . . . , wn be complex numbers. A line L in the complex
plane is called a mean line for the points w1, w2, . . . , wn if L contains points (complex numbers)
z1, z2, . . . , zn such that

n∑
k=1

(zk − wk) = 0.

For the numbers w1 = 32 + 170i, w2 = −7 + 64i, w3 = −9 + 200i, w4 = 1 + 27i, and
w5 = −14 + 43i, there is a unique mean line with y-intercept 3. Find the slope of this mean
line.

[Solution: 163]

5∑
k=1

zk −
5∑
k=1

wk = 0 =⇒
5∑
k=1

zk = 3 + 504i

Each zk = xk + yki lies on the complex line y = mx+ 3, so we can rewrite this as

5∑
k=1

zk =

5∑
k=1

xk +

n∑
k=1

yki =⇒ 3 + 504i =

5∑
k=1

xk + i

5∑
k=1

(mxk + 3)

Matching the real parts and the imaginary parts, we get that
∑5
k=1 xk = 3 and∑5

k=1(mxk + 3) = 504. Simplifying the second summation, we find that

m
∑5
k=1 xk = 504− 3 · 5 = 489, and substituting, the answer is m · 3 = 489 =⇒ m = 163 .

12. (1996 AIME Problem 11) Let P be the product of the roots of z6 + z4 + z3 + z2 + 1 = 0 that
have a positive imaginary part, and suppose that P = r(cos θ◦ + i sin θ◦), where 0 < r and
0 ≤ θ < 360. Find θ.

[Solution: ]

Let w = the 5th roots of unity, except for 1. Then w6+w4+w3+w2+1 = w4+w3+w2+w+1 =
0, and since both sides have the fifth roots of unity as roots, we have that
z4 + z3 + z2 + z + 1|z6 + z4 + z3 + z2 + 1. Long division quickly gives the other factor to be

z2 − z + 1. Thus, z2 − z + 1 = 0 =⇒ z = 1±
√
−3

2 = cis 60, cis 300

Discarding the roots with negative imaginary parts (leaving us with cisθ, 0 < θ < 180), we

are left with cis 60, 72, 144; their product is P = cis(60 + 72 + 144) = cis 276 .

13. (1997 AIME Problem 11)

Let x =

44∑
n=1

cosn◦

44∑
n=1

sinn◦
. What is the greatest integer that does not exceed 100x?

[Solution: 241]

Using the identity sin a + sin b = 2 sin a+b
2 cos a−b2 =⇒ sinx + cosx = sinx + sin(90 − x)

= 2 sin 45 cos(45− x) =
√

2 cos(45− x), note that

44∑
n=1

cosn+

44∑
n=1

sinn =
√

2

44∑
n=1

cos(45− n) =
√

2

44∑
n=1

cosn
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=⇒
44∑
n=1

sinn = (
√

2− 1)

44∑
n=1

cosn =⇒ x =

44∑
n=1

cosn

44∑
n=1

sinn

=
1√

2− 1
=
√

2 + 1

Thus, b100xc = b100(
√

2 + 1)c = 241 .

14. (2002 AIME I Problem 12) Let F (z) = z+i
z−i for all complex numbers z 6= i, and let zn = F (zn−1)

for all positive integers n. Given that z0 = 1
137 + i and z2002 = a+ bi, where a and b are real

numbers, find a+ b.

[Solution: a+ b = 275, where a = 1 and b = 274]

Iterating F we get:

F (z) =
z + i

z − i

F (F (z)) =
z+i
z−i + i
z+i
z−i − i

=
(z + i) + i(z − i)
(z + i)− i(z − i)

=
z + i+ zi+ 1

z + i− zi− 1
=

(z + 1)(i+ 1)

(z − 1)(1− i)

=
(z + 1)(i+ 1)2

(z − 1)(12 + 12)
=

(z + 1)(2i)

(z − 1)(2)
=
z + 1

z − 1
i

F (F (F (z))) =
z+1
z−1 i+ i
z+1
z−1 i− i

=
z+1
z−1 + 1
z+1
z−1 − 1

=
(z + 1) + (z − 1)

(z + 1)− (z − 1)
=

2z

2
= z.

From this, it follows that zk+3 = zk, for all k. Thus,

z2002 = z3·667+1 = z1 =
z0 + i

z0 − i
=

( 1
137 + i) + i

( 1
137 + i)− i

=
1

137 + 2i
1

137

= 1 + 274i

Thus a+ b = 1 + 274 = 275 .

15. (2004 AIME I Problem 13) The polynomial P (x) = (1 + x + x2 + · · · + x17)2 − x17 has 34
complex roots of the form zk = rk[cos(2πak) + i sin(2πak)], k = 1, 2, 3, . . . , 34, with
0 < a1 ≤ a2 ≤ a3 ≤ · · · ≤ a34 < 1 and rk > 0. Given that a1 + a2 + a3 + a4 + a5 = m/n, where
m and n are relatively prime positive integers, find m+ n.

[Solution: m+ n = 482, where m = 159 and n = 323]

By using the sum of the geometric series, we see that

P (x) =

(
x18 − 1

x− 1

)2

− x17 =
x36 − 2x18 + 1

x2 − 2x+ 1
− x17

=
x36 − x19 − x17 + 1

(x− 1)2
=

(x19 − 1)(x17 − 1)

(x− 1)2

This expression has roots at every 17th root and 19th roots of unity, other than 1. Since 17
and 19 are relatively prime, this means there are no duplicate roots. Thus, a1, a2, a3, a4 and
a5 are the five smallest fractions of the form m

19 or n
17 for m,n > 0.

3
17 and 4

19 can both be seen to be larger than any of 1
19 ,

2
19 ,

3
19 ,

1
17 ,

2
17 , so these latter five are

the numbers we want to add.

Thus, m
n = 1

19 + 2
19 + 3

19 + 1
17 + 2

17 = 6
19 + 3

17 = 6·17+3·19
17·19 = 159

323 and so the answer is

m+ n = 159 + 323 = 482 .
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16. (1994 AIME Problem 13) The equation x10+(13x−1)10 = 0 has 10 complex roots r1, r1, r2, r2,
r3, r3, r4, r4, r5, r5, where the bar denotes complex conjugation. Find the value of

1

r1r1
+

1

r2r2
+

1

r3r3
+

1

r4r4
+

1

r5r5

[Solution: 850]

Divide both sides by x10 to get

1 +

(
13− 1

x

)10

= 0 =⇒
(

13− 1

x

)10

= −1 =⇒ 13− 1

x
= ω

where ω = cis(π(2n+ 1)/10) and 0 ≤ n ≤ 9 is an integer. We see that
1

x
= 13− ω. Thus,

1

xx
= (13− ω)(13− ω) = 169− 13(ω + ω) + ωω = 170− 13(ω + ω)

Summing over all terms:

1

r1r1
+ · · ·+ 1

r5r5
= 5 · 170− 13(cis(π(1)/10) + · · ·+ cis(π(19)/10)) = 850− 0 = 850

17. (1998 AIME Problem 13) If {a1, a2, a3, . . . , an} is a set of real numbers, indexed so that
a1 < a2 < a3 < · · · < an, its complex power sum is defined to be a1i+ a2i

2 + a3i
3 + · · ·+ ani

n,
where i2 = −1. Let Sn be the sum of the complex power sums of all nonempty subsets of
{1, 2, . . . , n}. Given that S8 = −176 − 64i and S9 = p + qi, where p and q are integers, find
|p|+ |q|.
[Solution: |p|+ |q| = 368, where p = −352 and q = 16]

We note that the number of subsets (for now, including the empty subset, which we will just
define to have a power sum of zero) with 9 in it is equal to the number of subsets without a
9. To easily see this, take all possible subsets of {1, 2, . . . , 8}. Since the sets are ordered, a 9
must go at the end; hence we can just append a 9 to any of those subsets to get a new one.

Now that we have drawn that bijection, we can calculate the complex power sum recursively.
Since appending a 9 to a subset doesn’t change anything about that subset’s complex power
sum besides adding an additional term, we have that S9 = 2S8 + T9, where T9 refers to the
sum of all of the 9ix.

If a subset of size 1 has a 9, then its power sum must be 9i, and there is only 1 of these such

subsets. There are

(
8

1

)
with 9 · i2,

(
8

2

)
with 9 · i3, and so forth. So T9 =

∑8
k=0 9

(
8

k

)
ik+1.

This is exactly the binomial expansion of 9i · (1 + i)8. We can use De Moivre’s Theorem
to calculate the power: (1 + i)8 = (

√
2)8 cos(8 · 45) = 16. Hence T9 = 16 · 9i = 144i, and

S9 = 2S8 + 144i = 2(−176− 64i) + 144i = −352 + 16i. Thus, |p|+ |q| = | − 352|+ |16| = 368 .

18. (1989 AIME Problem 14) Given a positive integer n, it can be shown that every complex
number of the form r + si, where r and s are integers, can be uniquely expressed in the base
−n+ i using the integers 1, 2, . . . , n2 as digits. That is, the equation

r + si = am(−n+ i)m + am−1(−n+ i)m−1 + · · ·+ a1(−n+ i) + a0

is true for a unique choice of a non-negative integer m and digits a0, a1, . . . , am chosen from
the set {0, 1, 2, . . . , n2}, with am 6= 0. We write

r + si = (amam−1 . . . a1a0)−n+i
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to denote the base −n + i expansion of r + si. There are only finitely many integers k + 0i
that have four-digit expansions

k = (a3a2a1a0)−3+i, a3 6= 0

Find the sum of all such k.

[Solution: 490]

First, we find the first three powers of −3 + i:

(−3 + i)1 = −3 + i; (−3 + i)2 = 8− 6i; (−3 + i)3 = −18 + 26i

So we need to solve the Diophantine equation a1 − 6a2 + 26a3 = 0 =⇒ a1 − 6a2 = −26a3.

The minimum the left hand side can go is -54, so a3 ≤ 2, so we try cases:

• Case 1: a3 = 2 The only solution to that is (a1, a2, a3) = (2, 9, 2).

• Case 2: a3 = 1 The only solution to that is (a1, a2, a3) = (4, 5, 1).

• Case 3: a3 = 0 a3 cannot be 0, or else we do not have a four digit number.

So we have the four digit integers (292a0)−3+i and (154a0)−3+i, and we need to find the sum
of all integers k that can be expressed by one of those.

(292a0)−3+i:

We plug the first three digits into base 10 to get 30 + a0. The sum of the integers k in that
form is 345.

(154a0)−3+i:

We plug the first three digits into base 10 to get 10 + a0. The sum of the integers k in that
form is 145. The answer is 345 + 145 = 490 .
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