Complex Numbers Solutions

Joseph Zoller

February 7, 2016

Solutions

1. (2009 AIME I Problem 2) There is a complex number z with imaginary part 164 and a positive integer n such that

$$
\frac{z}{z+n}=4 i
$$

Find n.
[Solution: $n=697$]

$$
\begin{aligned}
\frac{z}{z+n}=4 i \Longrightarrow 1-\frac{n}{z+n} & =4 i \Longrightarrow 1-4 i=\frac{n}{z+n} \Longrightarrow \frac{1}{1-4 i}=\frac{z+n}{n} \\
& \Longrightarrow \frac{1+4 i}{17}=\frac{z}{n}+1
\end{aligned}
$$

Since their imaginary part has to be equal,

$$
\frac{4 i}{17}=\frac{164 i}{n} \Longrightarrow n=\frac{(164)(17)}{4}=697 \Longrightarrow n=697
$$

2. (1985 AIME Problem 3) Find c if a, b, and c are positive integers which satisfy $c=(a+b i)^{3}-107 i$, where $i^{2}=-1$.
[Solution: $c=198$, where $a=6$ and $b=1$]
Expanding out both sides of the given equation we have $c+107 i=\left(a^{3}-3 a b^{2}\right)+\left(3 a^{2} b-b^{3}\right) i$. Two complex numbers are equal if and only if their real parts and imaginary parts are equal, so $c=a^{3}-3 a b^{2}$ and $107=3 a^{2} b-b^{3}=\left(3 a^{2}-b^{2}\right) b$. Since a, b are integers, this means b is a divisor of 107 , which is a prime number. Thus either $b=1$ or $b=107$. If $b=107,3 a^{2}-107^{2}=1$ so $3 a^{2}=107^{2}+1$, but $107^{2}+1$ is not divisible by 3 , a contradiction. Thus we must have $b=1$, $3 a^{2}=108$ so $a^{2}=36$ and $a=6$ (since we know a is positive). Thus $c=6^{3}-3 \cdot 6=198$.
3. (1995 AIME Problem 5) For certain real values of a, b, c, and d, the equation $x^{4}+a x^{3}+b x^{2}+c x+d=0$ has four non-real roots. The product of two of these roots is $13+i$ and the sum of the other two roots is $3+4 i$, where $i=\sqrt{-1}$. Find b.
[Solution: $b=051$]
Since the coefficients of the polynomial are real, it follows that the non-real roots must come in complex conjugate pairs. Let the first two roots be m, n. Since $m+n$ is not real, m, n are not conjugates, so the other pair of roots must be the conjugates of m, n. Let m^{\prime} be the conjugate of m, and n^{\prime} be the conjugate of n. Then,

$$
m \cdot n=13+i, m^{\prime}+n^{\prime}=3+4 i \Longrightarrow m^{\prime} \cdot n^{\prime}=13-i, m+n=3-4 i
$$

By Vieta's formulas, we have that $b=m m^{\prime}+n n^{\prime}+m n^{\prime}+n m^{\prime}+m n+m^{\prime} n^{\prime}=(m+n)\left(m^{\prime}+\right.$ $\left.n^{\prime}\right)+m n+m^{\prime} n^{\prime}=051$.
4. (1984 AIME Problem 8) The equation $z^{6}+z^{3}+1=0$ has complex roots with argument θ between 90° and 180° in the complex plane. Determine the degree measure of θ.
[Solution: $\theta=160^{\circ}$]
We shall introduce another factor to make the equation easier to solve. If r is a root of $z^{6}+z^{3}+1$, then $0=\left(r^{3}-1\right)\left(r^{6}+r^{3}+1\right)=r^{9}-1$. Thus, the root we want is also a 9 th root of unity.
This reduces θ to either 120° or 160°. But θ can't be 120° because if $r=\cos 120^{\circ}+i \sin 120^{\circ}$, then $r^{6}+r^{3}+1=3$. This leaves $\theta=160$.
5. (1994 AIME Problem 8) The points $(0,0),(a, 11)$, and $(b, 37)$ are the vertices of an equilateral triangle. Find the value of $a b$.
[Solution: $a b=315$]
Consider the points on the complex plane. The point $b+37 i$ is then a rotation by 60° of $a+11 i$ about the origin, so

$$
(a+11 i)\left(\operatorname{cis} 60^{\circ}\right)=(a+11 i)\left(\frac{1}{2}+\frac{\sqrt{3} i}{2}\right)=b+37 i
$$

Equating the real and imaginary parts, we have:

$$
b=\frac{a}{2}-\frac{11 \sqrt{3}}{2} \Longrightarrow 37=\frac{11}{2}+\frac{a \sqrt{3}}{2} \Longrightarrow a=21 \sqrt{3} \Longrightarrow b=5 \sqrt{3}
$$

Thus, the answer is $a b=(21 \sqrt{3})(5 \sqrt{3})=315$.
Note: There is another solution where the point $b+37 i$ is a rotation of -60 degrees of $a+11 i$; however, this triangle is just a reflection of the first triangle by the y-axis, and the signs of a and b are flipped. However, the product $a b$ is unchanged.
6. (1999 AIME Problem 9) A function f is defined on the complex numbers by $f(z)=(a+b i) z$, where a and b are positive numbers. This function has the property that the image of each point in the complex plane is equidistant from that point and the origin. Given that $|a+b i|=8$ and that $b^{2}=m / n$, where m and n are relatively prime positive integers, find $m+n$.
[Solution: $m+n=259$, where $m=255$ and $n=4$]
Plugging in $z=1$ yields $f(1)=a+b i$. This implies that $a+b i$ must fall on the line $\operatorname{Re}(z)=\frac{1}{2} \Longrightarrow a=\frac{1}{2}$, given the equidistant rule. By $|a+b i|=8$, we get $a^{2}+b^{2}=64$, and plugging in $a=\frac{1}{2}$ yields $b^{2}=\frac{255}{4}$. The answer is thus 259 .
7. (2000 AIME II Problem 9) Given that z is a complex number such that $z+\frac{1}{z}=2 \cos 3^{\circ}$, find the least integer that is greater than $z^{2000}+\frac{1}{z^{2000}}$.
[Solution: 000]
Using the quadratic equation on $z^{2}-(2 \cos 3) z+1=0$, we have $z=\frac{2 \cos 3 \pm \sqrt{4 \cos ^{2} 3-4}}{2}=$ $\cos 3 \pm i \sin 3=\operatorname{cis} 3^{\circ}$.
Using De Moivre's Theorem we have $z^{2000}=\cos 6000^{\circ}+i \sin 6000^{\circ}, 6000=16(360)+240$, so $z^{2000}=\cos 240^{\circ}+i \sin 240^{\circ}$.
We want $z^{2000}+\frac{1}{z^{2000}}=2 \cos 240^{\circ}=-1$. Finally, the least integer greater than -1 is 000 .
8. (2005 AIME II Problem 9) For how many positive integers $n \leq 1000$ is $(\sin t+i \cos t)^{n}=\sin n t+i \cos n t$ true for all real t ?
[Solution: 250, where $n \in 1+4 \mathbb{Z}$]
This problem begs us to use the familiar identity $e^{i t}=\cos (t)+i \sin (t)$. Notice that $\sin (t)+i \cos (t)=i(\cos (t)-i \sin (t))=i e^{-i t} \operatorname{since} \sin (-t)=-\sin (t)$. Using this,
$(\sin (t)+i \cos (t))^{n}=\sin (n t)+i \cos (n t)$ is recast as $\left(i e^{-i t}\right)^{n}=i e^{-i t n}$. Hence we must have $i^{n}=i \Rightarrow i^{n-1}=1 \Rightarrow n \equiv 1 \bmod 4$. Thus since 1000 is a multiple of 4 exactly one quarter of the residues are congruent to 1 hence we have 250 .
9. (1990 AIME Problem 10) The sets $A=\left\{z: z^{18}=1\right\}$ and $B=\left\{w: w^{48}=1\right\}$ are both sets of complex roots of unity. The set $C=\{z w: z \in A$ and $w \in B\}$ is also a set of complex roots of unity. How many distinct elements are in C ?
[Solution: $|C|=144$]
The least common multiple of 18 and 48 is 144 , so define $n=e^{2 \pi i / 144}$. We can write the numbers of set A as $\left\{n^{8}, n^{16}, \ldots n^{144}\right\}$ and of set B as $\left\{n^{3}, n^{6}, \ldots n^{144}\right\}$. n^{x} can yield at most 144 different values. All solutions for $z w$ will be in the form of $n^{8 k_{1}+3 k_{2}}$.
8 and 3 are relatively prime, and it is well known that for two relatively prime integers a and b, the largest number that cannot be expressed as the sum of multiples of a and b is ($a b-a-b$). For 3,8 , this is 13 ; however, we can easily see that the numbers 145 to 157 can be written in terms of 3 and 8 . Since the exponents are of roots of unities, they reduce mod 144 , so all numbers in the range are covered. Thus the answer is 144 .
10. (1992 AIME Problem 10) Consider the region A in the complex plane that consists of all points z such that both $\frac{z}{40}$ and $\frac{40}{\bar{z}}$ have real and imaginary parts between 0 and 1 , inclusive. What is the integer that is nearest the area of A ?
[Solution: $[A] \approx 572$]
Let $z=a+b i \Longrightarrow \frac{z}{40}=\frac{a}{40}+\frac{b}{40} i$. Since $0 \leq \frac{a}{40}, \frac{b}{40} \leq 1$ we have the inequality

$$
0 \leq a, b \leq 40
$$

which is a square of side length 40.
Also, $\frac{40}{\bar{z}}=\frac{40}{a-b i}=\frac{40 a}{a^{2}+b^{2}}+\frac{40 b}{a^{2}+b^{2}} i$ so we have $0 \leq a, b \leq \frac{a^{2}+b^{2}}{40}$, which leads to

$$
\begin{aligned}
& (a-20)^{2}+b^{2} \geq 20^{2} \\
& a^{2}+(b-20)^{2} \geq 20^{2}
\end{aligned}
$$

We graph them:

We want the area outside the two circles but inside the square. Doing a little geometry, the area of the intersection of those three graphs is $40^{2}-\frac{40^{2}}{4}-\frac{1}{2} \pi 20^{2}=1200-200 \pi \approx 571.68$. Thus, by rounding to the nearest integer we get 572 .
11. (1988 AIME Problem 11) Let $w_{1}, w_{2}, \ldots, w_{n}$ be complex numbers. A line L in the complex plane is called a mean line for the points $w_{1}, w_{2}, \ldots, w_{n}$ if L contains points (complex numbers) $z_{1}, z_{2}, \ldots, z_{n}$ such that

$$
\sum_{k=1}^{n}\left(z_{k}-w_{k}\right)=0
$$

For the numbers $w_{1}=32+170 i, w_{2}=-7+64 i, w_{3}=-9+200 i, w_{4}=1+27 i$, and $w_{5}=-14+43 i$, there is a unique mean line with y-intercept 3 . Find the slope of this mean line.
[Solution: 163]

$$
\sum_{k=1}^{5} z_{k}-\sum_{k=1}^{5} w_{k}=0 \Longrightarrow \sum_{k=1}^{5} z_{k}=3+504 i
$$

Each $z_{k}=x_{k}+y_{k} i$ lies on the complex line $y=m x+3$, so we can rewrite this as

$$
\sum_{k=1}^{5} z_{k}=\sum_{k=1}^{5} x_{k}+\sum_{k=1}^{n} y_{k} i \Longrightarrow 3+504 i=\sum_{k=1}^{5} x_{k}+i \sum_{k=1}^{5}\left(m x_{k}+3\right)
$$

Matching the real parts and the imaginary parts, we get that $\sum_{k=1}^{5} x_{k}=3$ and
$\sum_{k=1}^{5}\left(m x_{k}+3\right)=504$. Simplifying the second summation, we find that
$m \sum_{k=1}^{5} x_{k}=504-3 \cdot 5=489$, and substituting, the answer is $m \cdot 3=489 \Longrightarrow m=163$.
12. (1996 AIME Problem 11) Let P be the product of the roots of $z^{6}+z^{4}+z^{3}+z^{2}+1=0$ that have a positive imaginary part, and suppose that $\mathrm{P}=r\left(\cos \theta^{\circ}+i \sin \theta^{\circ}\right)$, where $0<r$ and $0 \leq \theta<360$. Find θ.
[Solution:]
Let $w=$ the 5 th roots of unity, except for 1 . Then $w^{6}+w^{4}+w^{3}+w^{2}+1=w^{4}+w^{3}+w^{2}+w+1=$ 0 , and since both sides have the fifth roots of unity as roots, we have that
$z^{4}+z^{3}+z^{2}+z+1 \mid z^{6}+z^{4}+z^{3}+z^{2}+1$. Long division quickly gives the other factor to be $z^{2}-z+1$. Thus, $z^{2}-z+1=0 \Longrightarrow z=\frac{1 \pm \sqrt{-3}}{2}=\operatorname{cis} 60$, cis 300
Discarding the roots with negative imaginary parts (leaving us with $\operatorname{cis} \theta, 0<\theta<180$), we are left with cis $60,72,144$; their product is $P=\operatorname{cis}(60+72+144)=\operatorname{cis} 276$.
13. (1997 AIME Problem 11)

Let $x=\frac{\sum_{n=1}^{44} \cos n^{\circ}}{\sum_{n=1}^{44} \sin n^{\circ}}$. What is the greatest integer that does not exceed $100 x$?
[Solution: 241]
Using the identity $\sin a+\sin b=2 \sin \frac{a+b}{2} \cos \frac{a-b}{2} \Longrightarrow \sin x+\cos x=\sin x+\sin (90-x)$ $=2 \sin 45 \cos (45-x)=\sqrt{2} \cos (45-x)$, note that

$$
\sum_{n=1}^{44} \cos n+\sum_{n=1}^{44} \sin n=\sqrt{2} \sum_{n=1}^{44} \cos (45-n)=\sqrt{2} \sum_{n=1}^{44} \cos n
$$

$$
\Longrightarrow \sum_{n=1}^{44} \sin n=(\sqrt{2}-1) \sum_{n=1}^{44} \cos n \Longrightarrow x=\frac{\sum_{n=1}^{44} \cos n}{\sum_{n=1}^{44} \sin n}=\frac{1}{\sqrt{2}-1}=\sqrt{2}+1
$$

Thus, $\lfloor 100 x\rfloor=\lfloor 100(\sqrt{2}+1)\rfloor=241$.
14. (2002 AIME I Problem 12) Let $F(z)=\frac{z+i}{z-i}$ for all complex numbers $z \neq i$, and let $z_{n}=F\left(z_{n-1}\right)$ for all positive integers n. Given that $z_{0}=\frac{1}{137}+i$ and $z_{2002}=a+b i$, where a and b are real numbers, find $a+b$.
[Solution: $a+b=275$, where $a=1$ and $b=274$]
Iterating F we get:

$$
\begin{aligned}
F(z) & =\frac{z+i}{z-i} \\
F(F(z)) & =\frac{\frac{z+i}{z-i}+i}{\frac{z+i}{z-i}-i}=\frac{(z+i)+i(z-i)}{(z+i)-i(z-i)}=\frac{z+i+z i+1}{z+i-z i-1}=\frac{(z+1)(i+1)}{(z-1)(1-i)} \\
& =\frac{(z+1)(i+1)^{2}}{(z-1)\left(1^{2}+1^{2}\right)}=\frac{(z+1)(2 i)}{(z-1)(2)}=\frac{z+1}{z-1} i \\
F(F(F(z))) & =\frac{\frac{z+1}{z-1} i+i}{\frac{z+1}{z-1} i-i}=\frac{\frac{z+1}{z-1}+1}{\frac{z+1}{z-1}-1}=\frac{(z+1)+(z-1)}{(z+1)-(z-1)}=\frac{2 z}{2}=z .
\end{aligned}
$$

From this, it follows that $z_{k+3}=z_{k}$, for all k. Thus,

$$
z_{2002}=z_{3 \cdot 667+1}=z_{1}=\frac{z_{0}+i}{z_{0}-i}=\frac{\left(\frac{1}{137}+i\right)+i}{\left(\frac{1}{137}+i\right)-i}=\frac{\frac{1}{137}+2 i}{\frac{1}{137}}=1+274 i
$$

Thus $a+b=1+274=275$.
15. (2004 AIME I Problem 13) The polynomial $P(x)=\left(1+x+x^{2}+\cdots+x^{17}\right)^{2}-x^{17}$ has 34 complex roots of the form $z_{k}=r_{k}\left[\cos \left(2 \pi a_{k}\right)+i \sin \left(2 \pi a_{k}\right)\right], k=1,2,3, \ldots, 34$, with $0<a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{34}<1$ and $r_{k}>0$. Given that $a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=m / n$, where m and n are relatively prime positive integers, find $m+n$.
[Solution: $m+n=482$, where $m=159$ and $n=323$]
By using the sum of the geometric series, we see that

$$
\begin{aligned}
P(x) & =\left(\frac{x^{18}-1}{x-1}\right)^{2}-x^{17}=\frac{x^{36}-2 x^{18}+1}{x^{2}-2 x+1}-x^{17} \\
& =\frac{x^{36}-x^{19}-x^{17}+1}{(x-1)^{2}}=\frac{\left(x^{19}-1\right)\left(x^{17}-1\right)}{(x-1)^{2}}
\end{aligned}
$$

This expression has roots at every 17 th root and 19 th roots of unity, other than 1 . Since 17 and 19 are relatively prime, this means there are no duplicate roots. Thus, $a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5} are the five smallest fractions of the form $\frac{m}{19}$ or $\frac{n}{17}$ for $m, n>0$.
$\frac{3}{17}$ and $\frac{4}{19}$ can both be seen to be larger than any of $\frac{1}{19}, \frac{2}{19}, \frac{3}{19}, \frac{1}{17}, \frac{2}{17}$, so these latter five are the numbers we want to add.
Thus, $\frac{m}{n}=\frac{1}{19}+\frac{2}{19}+\frac{3}{19}+\frac{1}{17}+\frac{2}{17}=\frac{6}{19}+\frac{3}{17}=\frac{6 \cdot 17+3 \cdot 19}{17 \cdot 19}=\frac{159}{323}$ and so the answer is $m+n=159+323=482$.
16. (1994 AIME Problem 13) The equation $x^{10}+(13 x-1)^{10}=0$ has 10 complex roots $r_{1}, \overline{r_{1}}, r_{2}, \overline{r_{2}}$, $r_{3}, \overline{r_{3}}, r_{4}, \overline{r_{4}}, r_{5}, \overline{r_{5}}$, where the bar denotes complex conjugation. Find the value of

$$
\frac{1}{r_{1} \overline{r_{1}}}+\frac{1}{r_{2} \overline{r_{2}}}+\frac{1}{r_{3} \overline{r_{3}}}+\frac{1}{r_{4} \overline{r_{4}}}+\frac{1}{r_{5} \overline{r_{5}}}
$$

[Solution: 850]
Divide both sides by x^{10} to get

$$
1+\left(13-\frac{1}{x}\right)^{10}=0 \Longrightarrow\left(13-\frac{1}{x}\right)^{10}=-1 \Longrightarrow 13-\frac{1}{x}=\omega
$$

where $\omega=\operatorname{cis}(\pi(2 n+1) / 10)$ and $0 \leq n \leq 9$ is an integer. We see that $\frac{1}{x}=13-\omega$. Thus,

$$
\frac{1}{x \bar{x}}=(13-\omega)(13-\bar{\omega})=169-13(\omega+\bar{\omega})+\omega \bar{\omega}=170-13(\omega+\bar{\omega})
$$

Summing over all terms:

$$
\frac{1}{r_{1} \overline{r_{1}}}+\cdots+\frac{1}{r_{5} \overline{r_{5}}}=5 \cdot 170-13(\operatorname{cis}(\pi(1) / 10)+\cdots+\operatorname{cis}(\pi(19) / 10))=850-0=850
$$

17. (1998 AIME Problem 13) If $\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$ is a set of real numbers, indexed so that $a_{1}<a_{2}<a_{3}<\cdots<a_{n}$, its complex power sum is defined to be $a_{1} i+a_{2} i^{2}+a_{3} i^{3}+\cdots+a_{n} i^{n}$, where $i^{2}=-1$. Let S_{n} be the sum of the complex power sums of all nonempty subsets of $\{1,2, \ldots, n\}$. Given that $S_{8}=-176-64 i$ and $S_{9}=p+q i$, where p and q are integers, find $|p|+|q|$.
[Solution: $|p|+|q|=368$, where $p=-352$ and $q=16$]
We note that the number of subsets (for now, including the empty subset, which we will just define to have a power sum of zero) with 9 in it is equal to the number of subsets without a 9. To easily see this, take all possible subsets of $\{1,2, \ldots, 8\}$. Since the sets are ordered, a 9 must go at the end; hence we can just append a 9 to any of those subsets to get a new one.
Now that we have drawn that bijection, we can calculate the complex power sum recursively. Since appending a 9 to a subset doesn't change anything about that subset's complex power sum besides adding an additional term, we have that $S_{9}=2 S_{8}+T_{9}$, where T_{9} refers to the sum of all of the $9 i^{x}$.

If a subset of size 1 has a 9 , then its power sum must be $9 i$, and there is only 1 of these such subsets. There are $\binom{8}{1}$ with $9 \cdot i^{2},\binom{8}{2}$ with $9 \cdot i^{3}$, and so forth. So $T_{9}=\sum_{k=0}^{8} 9\binom{8}{k} i^{k+1}$. This is exactly the binomial expansion of $9 i \cdot(1+i)^{8}$. We can use De Moivre's Theorem to calculate the power: $(1+i)^{8}=(\sqrt{2})^{8} \cos (8 \cdot 45)=16$. Hence $T_{9}=16 \cdot 9 i=144 i$, and $S_{9}=2 S_{8}+144 i=2(-176-64 i)+144 i=-352+16 i$. Thus, $|p|+|q|=|-352|+|16|=368$.
18. (1989 AIME Problem 14) Given a positive integer n, it can be shown that every complex number of the form $r+s i$, where r and s are integers, can be uniquely expressed in the base $-n+i$ using the integers $1,2, \ldots, n^{2}$ as digits. That is, the equation

$$
r+s i=a_{m}(-n+i)^{m}+a_{m-1}(-n+i)^{m-1}+\cdots+a_{1}(-n+i)+a_{0}
$$

is true for a unique choice of a non-negative integer m and digits $a_{0}, a_{1}, \ldots, a_{m}$ chosen from the set $\left\{0,1,2, \ldots, n^{2}\right\}$, with $a_{m} \neq 0$. We write

$$
r+s i=\left(a_{m} a_{m-1} \ldots a_{1} a_{0}\right)_{-n+i}
$$

to denote the base $-n+i$ expansion of $r+s i$. There are only finitely many integers $k+0 i$ that have four-digit expansions

$$
k=\left(a_{3} a_{2} a_{1} a_{0}\right)_{-3+i}, \quad a_{3} \neq 0
$$

Find the sum of all such k.
[Solution: 490]
First, we find the first three powers of $-3+i$:
$(-3+i)^{1}=-3+i ;(-3+i)^{2}=8-6 i ;(-3+i)^{3}=-18+26 i$
So we need to solve the Diophantine equation $a_{1}-6 a_{2}+26 a_{3}=0 \Longrightarrow a_{1}-6 a_{2}=-26 a_{3}$.
The minimum the left hand side can go is -54 , so $a_{3} \leq 2$, so we try cases:

- Case 1: $a_{3}=2$ The only solution to that is $\left(a_{1}, a_{2}, a_{3}\right)=(2,9,2)$.
- Case 2: $a_{3}=1$ The only solution to that is $\left(a_{1}, a_{2}, a_{3}\right)=(4,5,1)$.
- Case 3: $a_{3}=0 a_{3}$ cannot be 0 , or else we do not have a four digit number.

So we have the four digit integers $\left(292 a_{0}\right)_{-3+i}$ and $\left(154 a_{0}\right)_{-3+i}$, and we need to find the sum of all integers k that can be expressed by one of those.
$\left(292 a_{0}\right)_{-3+i}$:
We plug the first three digits into base 10 to get $30+a_{0}$. The sum of the integers k in that form is 345 .
$\left(154 a_{0}\right)_{-3+i}$:
We plug the first three digits into base 10 to get $10+a_{0}$. The sum of the integers k in that form is 145 . The answer is $345+145=490$.

