Complex Numbers Practice

Joseph Zoller

February 7, 2016

Problems

1. (2009 AIME I Problem 2) There is a complex number z with imaginary part 164 and a positive integer n such that

$$
\frac{z}{z+n}=4 i .
$$

Find n.
2. (1985 AIME Problem 3) Find c if a, b, and c are positive integers which satisfy $c=(a+b i)^{3}-107 i$, where $i^{2}=-1$.
3. (1995 AIME Problem 5) For certain real values of a, b, c, and d, the equation $x^{4}+a x^{3}+b x^{2}+c x+d=0$ has four non-real roots. The product of two of these roots is $13+i$ and the sum of the other two roots is $3+4 i$, where $i=\sqrt{-1}$. Find b.
4. (1984 AIME Problem 8) The equation $z^{6}+z^{3}+1=0$ has complex roots with argument θ between 90° and 180° in the complex plane. Determine the degree measure of θ.
5. (1994 AIME Problem 8) The points $(0,0),(a, 11)$, and $(b, 37)$ are the vertices of an equilateral triangle. Find the value of $a b$.
6. (1999 AIME Problem 9) A function f is defined on the complex numbers by $f(z)=(a+b i) z$, where a and b are positive numbers. This function has the property that the image of each point in the complex plane is equidistant from that point and the origin. Given that $|a+b i|=8$ and that $b^{2}=m / n$, where m and n are relatively prime positive integers, find $m+n$.
7. (2000 AIME II Problem 9) Given that z is a complex number such that $z+\frac{1}{z}=2 \cos 3^{\circ}$, find the least integer that is greater than $z^{2000}+\frac{1}{z^{2000}}$.
8. (2005 AIME II Problem 9) For how many positive integers $n \leq 1000$ is $(\sin t+i \cos t)^{n}=\sin n t+i \cos n t$ true for all real t ?
9. (1990 AIME Problem 10) The sets $A=\left\{z: z^{18}=1\right\}$ and $B=\left\{w: w^{48}=1\right\}$ are both sets of complex roots of unity. The set $C=\{z w: z \in A$ and $w \in B\}$ is also a set of complex roots of unity. How many distinct elements are in C ?
10. (1992 AIME Problem 10) Consider the region A in the complex plane that consists of all points z such that both $\frac{z}{40}$ and $\frac{40}{\bar{z}}$ have real and imaginary parts between 0 and 1 , inclusive. What is the integer that is nearest the area of A ?
11. (1988 AIME Problem 11) Let $w_{1}, w_{2}, \ldots, w_{n}$ be complex numbers. A line L in the complex plane is called a mean line for the points $w_{1}, w_{2}, \ldots, w_{n}$ if L contains points (complex numbers) $z_{1}, z_{2}, \ldots, z_{n}$ such that

$$
\sum_{k=1}^{n}\left(z_{k}-w_{k}\right)=0
$$

For the numbers $w_{1}=32+170 i, w_{2}=-7+64 i, w_{3}=-9+200 i, w_{4}=1+27 i$, and $w_{5}=-14+43 i$, there is a unique mean line with y-intercept 3 . Find the slope of this mean line.
12. (1996 AIME Problem 11) Let P be the product of the roots of $z^{6}+z^{4}+z^{3}+z^{2}+1=0$ that have a positive imaginary part, and suppose that $\mathrm{P}=r\left(\cos \theta^{\circ}+i \sin \theta^{\circ}\right)$, where $0<r$ and $0 \leq \theta<360$. Find θ.
13. (1997 AIME Problem 11)

Let $x=\frac{\sum_{n=1}^{44} \cos n^{\circ}}{\sum_{n=1}^{44} \sin n^{\circ}}$. What is the greatest integer that does not exceed $100 x$?
14. (2002 AIME I Problem 12) Let $F(z)=\frac{z+i}{z-i}$ for all complex numbers $z \neq i$, and let $z_{n}=F\left(z_{n-1}\right)$ for all positive integers n. Given that $z_{0}=\frac{1}{137}+i$ and $z_{2002}=a+b i$, where a and b are real numbers, find $a+b$.
15. (2004 AIME I Problem 13) The polynomial $P(x)=\left(1+x+x^{2}+\cdots+x^{17}\right)^{2}-x^{17}$ has 34 complex roots of the form $z_{k}=r_{k}\left[\cos \left(2 \pi a_{k}\right)+i \sin \left(2 \pi a_{k}\right)\right], k=1,2,3, \ldots, 34$, with $0<a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{34}<1$ and $r_{k}>0$. Given that $a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=m / n$, where m and n are relatively prime positive integers, find $m+n$.
16. (1994 AIME Problem 13) The equation $x^{10}+(13 x-1)^{10}=0$ has 10 complex roots $r_{1}, \overline{r_{1}}, r_{2}, \overline{r_{2}}$, $r_{3}, \overline{r_{3}}, r_{4}, \overline{r_{4}}, r_{5}, \overline{r_{5}}$, where the bar denotes complex conjugation. Find the value of

$$
\frac{1}{r_{1} \overline{r_{1}}}+\frac{1}{r_{2} \overline{r_{2}}}+\frac{1}{r_{3} \overline{r_{3}}}+\frac{1}{r_{4} \overline{r_{4}}}+\frac{1}{r_{5} \overline{r_{5}}}
$$

17. (1998 AIME Problem 13) If $\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$ is a set of real numbers, indexed so that $a_{1}<a_{2}<a_{3}<\cdots<a_{n}$, its complex power sum is defined to be $a_{1} i+a_{2} i^{2}+a_{3} i^{3}+\cdots+a_{n} i^{n}$, where $i^{2}=-1$. Let S_{n} be the sum of the complex power sums of all nonempty subsets of $\{1,2, \ldots, n\}$. Given that $S_{8}=-176-64 i$ and $S_{9}=p+q i$, where p and q are integers, find $|p|+|q|$.
18. (1989 AIME Problem 14) Given a positive integer n, it can be shown that every complex number of the form $r+s i$, where r and s are integers, can be uniquely expressed in the base $-n+i$ using the integers $1,2, \ldots, n^{2}$ as digits. That is, the equation

$$
r+s i=a_{m}(-n+i)^{m}+a_{m-1}(-n+i)^{m-1}+\cdots+a_{1}(-n+i)+a_{0}
$$

is true for a unique choice of a non-negative integer m and digits $a_{0}, a_{1}, \ldots, a_{m}$ chosen from the set $\left\{0,1,2, \ldots, n^{2}\right\}$, with $a_{m} \neq 0$. We write

$$
r+s i=\left(a_{m} a_{m-1} \ldots a_{1} a_{0}\right)_{-n+i}
$$

to denote the base $-n+i$ expansion of $r+s i$. There are only finitely many integers $k+0 i$ that have four-digit expansions

$$
k=\left(a_{3} a_{2} a_{1} a_{0}\right)_{-3+i}, \quad a_{3} \neq 0
$$

Find the sum of all such k.

