<□> <圖> < ≧> < ≧> < ≧> < ≧ < つへぐ

Polynomials and Vieta's Formulas

Misha Lavrov

ARML Practice 2/9/2014

<□> <圖> < ≧> < ≧> < ≧> < ≧ < つへぐ

Review problems

• If
$$a_0 = 0$$
 and $a_n = 3a_{n-1} + 2$, find a_{100} .

2 If
$$b_0 = 0$$
 and $b_n = n^2 - b_{n-1}$, find b_{100} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Review problems

• If
$$a_0 = 0$$
 and $a_n = 3a_{n-1} + 2$, find a_{100} .

Since $a_n + 1 = 3a_{n-1} + 3 = 3(a_{n-1} + 1)$, we have $a_n + 1 = 3^n(a_0 + 1) = 3^n$, so $a_{100} = 3^{100} - 1$.

2 If $b_0 = 0$ and $b_n = n^2 - b_{n-1}$, find b_{100} .

Review problems

• If
$$a_0 = 0$$
 and $a_n = 3a_{n-1} + 2$, find a_{100} .

Since $a_n + 1 = 3a_{n-1} + 3 = 3(a_{n-1} + 1)$, we have $a_n + 1 = 3^n(a_0 + 1) = 3^n$, so $a_{100} = 3^{100} - 1$.

2 If $b_0 = 0$ and $b_n = n^2 - b_{n-1}$, find b_{100} .

Let $s_n = (-1)^n b_n$, so that $s_n = s_{n-1} + (-1)^n n^2$. With $s_0 = 0$, this means $s_n = \sum_{k=1}^n (-1)^k k^2$. Therefore

 $b_{100} = s_{100} = 100^2 - 99^2 + 98^2 - \dots + 2^2 - 1^2.$

To simplify this, observe that $k^2 - (k-1)^2 = k + (k-1)$, so

 $b_{100} = 100 + 99 + 98 + \dots + 2 + 1 = 5050.$

・ロト・雪ト・雪ト・雪 うべつ

Vieta's Formulas The quadratic version

Suppose that $x = r_1$ and $x = r_2$ are the two solutions to the quadratic equation

$$x^2 + px + q = 0.$$

Then $r_1 \cdot r_2 = q$ and $r_1 + r_2 = -p$. To prove this, simply expand $(x - r_1)(x - r_2)$.

Slightly more generally, suppose that $x = r_1$ and $x = r_2$ are the two solutions of

$$ax^2 + bx + c = 0.$$

Then $r_1 \cdot r_2 = \frac{c}{a}$ and $r_1 + r_2 = -\frac{b}{a}$. This follows from the first version, if we divide the equation by a. For this reason, we assume the leading coefficient is 1 whenever we can.

Vieta's Formulas Problems

Let *a* and *b* be the roots of $x^2 - 3x - 1 = 0$. Try to solve the problems below without finding *a* and *b*; it will be easier that way, anyway.

- Find a quadratic equation whose roots are a^2 and b^2 .
- Compute $\frac{1}{a+1} + \frac{1}{b+1}$. (Hint: find a quadratic equation whose roots are $\frac{1}{a+1}$ and $\frac{1}{b+1}$ by manipulating the original.)

Surprise review problem:

Write a recurrence relation for the sequence x_n = aⁿ + bⁿ.
(We can actually use this to compute something like a⁵ + b⁵ more or less painlessly.)

Vieta's Formulas Solutions

• We know ab = -1 and a + b = 3, and want to find a^2b^2 and $a^2 + b^2$. These are given by:

$$\begin{cases} a^2b^2 = (ab)^2 = (-1)^2 = 1\\ a^2 + b^2 = (a+b)^2 - 2ab = 3^2 - 2(-1) = 11. \end{cases}$$

Therefore $x^2 - 11x + 1 = 0$ is the equation we want.

Another approach: expand $(x^2 - 3x - 1)(x^2 + 3x - 1)$ to get $x^4 - 11x^2 + 1$, then substitute x for x^2 . Why does this work?

The equation $(x-1)^2 - 3(x-1) - 1 = 0$, or $x^2 - 5x + 3 = 0$, has roots a + 1 and b + 1. Similarly, $(1/x)^2 - 5(1/x) + 3 = 0$, or $1 - 5x + 3x^2 = 0$, has roots $\frac{1}{a+1}$ and $\frac{1}{b+1}$. Therefore $\frac{1}{a+1} + \frac{1}{b+1} = \frac{5}{3}$.

So The recurrence is $x_n = 3x_{n-1} + x_{n-2}$, with $x_0 = 2$ and $x_1 = 3$.

Vieta's Formulas The general version

In general, given the equation

$$x^{n} + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_{1}x + a_{0} = 0,$$

we know the following:

- The sum of the roots (with multiplicity) is $-a_{n-1}$.
- The product of the roots is $(-1)^n a_0$.
- In general, $(-1)^k a_{n-k}$ is the sum of all *k*-fold products of the roots; for example, in a cubic equation with roots r_1, r_2, r_3 , the coefficient of x is $r_1r_2 + r_1r_3 + r_2r_3$.

(Don't forget that if x^n has a coefficient too, you should divide by it before applying these rules.)

Vieta's Formulas Problems

- (HMMT 1998) Three of the roots of $x^4 + ax^2 + bx + c = 0$ are 2, -3, and 5. Find the value of a + b + c.
- (AIME 2001) Find the sum of all the roots of the equation $x^{2001} + (\frac{1}{2} x)^{2001} = 0.$
- (AIME 1996) Suppose the roots of x³ + 3x² + 4x 11 = 0 are *a*, *b*, and *c*, and the roots of x³ + rx² + sx + t = 0 are a + b, b + c, and c + a.
 - By way of a warm-up, find r.
 - The real problem is to find *t*.

Vieta's Formulas Solutions

3

- The coefficient of x^3 is 0, so the sum of the roots is 0, and the fourth root must be -4. The polynomial factors as (x-2)(x-5)(x+3)(x+4). Setting x = 1 gives 1+a+b+c = (1-2)(1-5)(1+3)(1+4) = 80, so a+b+c = 79.
- ② Using Vieta's formulas is left as an exercise. A shortcut solution is to observe that if x is a root, so is ¹/₂ − x, and each such pair yields a total of ¹/₂. There are 2000 roots, so the total is 500.
 - We have r = -((a + b) + (b + c) + (a + c)) == -2(a + b + c) = 6.
 - To evaluate t = -(a + b)(a + c)(b + c), it helps to observe a + b + c = -3 and write a + b = -3 c and so on. Then t = -P(-3) = 23.

More problems

Let α, β, γ be the roots of $x^3 - 3x^2 + 1$.

- $\textbf{9 Find a polynomial whose roots are } \alpha + \textbf{3}, \ \beta + \textbf{3}, \ \text{and} \ \gamma + \textbf{3}.$
- Solution Find a polynomial whose roots are $\frac{1}{\alpha+3}$, $\frac{1}{\beta+3}$, and $\frac{1}{\gamma+3}$.
- **3** Compute $\frac{1}{\alpha+3} + \frac{1}{\beta+3} + \frac{1}{\gamma+3}$.
- Find a polynomial whose roots are α^2 , β^2 , and γ^2 .
- Sind a recurrence relation for x_n = αⁿ + βⁿ + γⁿ, and use it to compute α⁵ + β⁵ + γ⁵.

More problems

- To increment all roots by 3, substitute x 3 for x. This yields $x^3 12x^2 + 45x 53$.
- Reversing the coefficients to get 1 12x + 45x² 53x³ yields a polynomial whose roots are reciprocals of the polynomial above. (Do you see why?)
- Solution This is just the sum of the roots of the polynomial above: $\frac{45}{53}$.
- Observe that $x^3 + 3x^2 1$ has roots $-\alpha$, $-\beta$, and $-\gamma$. Therefore $(x^3 - 3x^2 + 1)(x^3 + 3x^2 - 1)$ has roots $\pm \alpha, \pm \beta, \pm \gamma$ and factors as $(x^2 - \alpha^2)(x^2 - \beta^2)(x^2 - \gamma^2)$. Replacing x^2 by x yields our answer: $x^3 - 9x^2 + 6x - 1$.
- The recurrence is $x_n = 3x_{n-1} x_{n-3}$. We have $x_0 = 3$, $x_1 = 3$, and $x_2 = 9$, so $x_3 = 24$, $x_4 = 69$, and $x_5 = 198$.

Even more problems

- (Canada 1988) For some integer *a*, the equations 1988x² + ax + 8891 = 0 and 8891x² + ax + 1988 = 0 share a common root. Find *a*.
- (ARML 1989) If P(x) is a polynomial in x such that for all x,

 $x^{23} + 23x^{17} - 18x^{16} - 24x^{15} + 108x^{14} = (x^4 - 3x^2 - 2x + 9) \cdot P(x),$

compute the sum of the coefficients of P(x).

Even more problems

 Let x be the common root; then by subtracting the two equations, we have

$$(8891 - 1988)x^2 + (1988 - 8891) = 0$$

so $x^2 - 1 = 0$, and therefore $x = \pm 1$. Plug ± 1 into one of the equations to get $1988 \pm a + 8891 = 0$ and therefore $a = \pm 10879$.

The sum of the coefficients of P(x) is P(1). Setting x = 1, we get

$$1 + 23 - 18 - 24 + 108 = (1 - 3 - 2 + 9)P(1).$$

Solving, we obtain P(1) = 18.