Polynomials and Vieta's Formulas

Misha Lavrov

ARML Practice 2/9/2014

Review problems

(1) If $a_{0}=0$ and $a_{n}=3 a_{n-1}+2$, find a_{100}.
(2) If $b_{0}=0$ and $b_{n}=n^{2}-b_{n-1}$, find b_{100}.

Review problems

(1) If $a_{0}=0$ and $a_{n}=3 a_{n-1}+2$, find a_{100}.

Since $a_{n}+1=3 a_{n-1}+3=3\left(a_{n-1}+1\right)$, we have $a_{n}+1=3^{n}\left(a_{0}+1\right)=3^{n}$, so $a_{100}=3^{100}-1$.
(2) If $b_{0}=0$ and $b_{n}=n^{2}-b_{n-1}$, find b_{100}.

Review problems

(1) If $a_{0}=0$ and $a_{n}=3 a_{n-1}+2$, find a_{100}.

Since $a_{n}+1=3 a_{n-1}+3=3\left(a_{n-1}+1\right)$, we have $a_{n}+1=3^{n}\left(a_{0}+1\right)=3^{n}$, so $a_{100}=3^{100}-1$.
(2) If $b_{0}=0$ and $b_{n}=n^{2}-b_{n-1}$, find b_{100}.

Let $s_{n}=(-1)^{n} b_{n}$, so that $s_{n}=s_{n-1}+(-1)^{n} n^{2}$. With $s_{0}=0$, this means $s_{n}=\sum_{k=1}^{n}(-1)^{k} k^{2}$. Therefore

$$
b_{100}=s_{100}=100^{2}-99^{2}+98^{2}-\cdots+2^{2}-1^{2} .
$$

To simplify this, observe that $k^{2}-(k-1)^{2}=k+(k-1)$, so

$$
b_{100}=100+99+98+\cdots+2+1=5050
$$

Vieta's Formulas

The quadratic version

Suppose that $x=r_{1}$ and $x=r_{2}$ are the two solutions to the quadratic equation

$$
x^{2}+p x+q=0
$$

Then $r_{1} \cdot r_{2}=q$ and $r_{1}+r_{2}=-p$. To prove this, simply expand $\left(x-r_{1}\right)\left(x-r_{2}\right)$.

Slightly more generally, suppose that $x=r_{1}$ and $x=r_{2}$ are the two solutions of

$$
a x^{2}+b x+c=0
$$

Then $r_{1} \cdot r_{2}=\frac{c}{a}$ and $r_{1}+r_{2}=-\frac{b}{a}$. This follows from the first version, if we divide the equation by a. For this reason, we assume the leading coefficient is 1 whenever we can.

Vieta's Formulas

Problems

Let a and b be the roots of $x^{2}-3 x-1=0$. Try to solve the problems below without finding a and b; it will be easier that way, anyway.
(1) Find a quadratic equation whose roots are a^{2} and b^{2}.
(2) Compute $\frac{1}{a+1}+\frac{1}{b+1}$. (Hint: find a quadratic equation whose roots are $\frac{1}{a+1}$ and $\frac{1}{b+1}$ by manipulating the original.)

Surprise review problem:
(3) Write a recurrence relation for the sequence $x_{n}=a^{n}+b^{n}$. (We can actually use this to compute something like $a^{5}+b^{5}$ more or less painlessly.)

Vieta's Formulas

Solutions

(1) We know $a b=-1$ and $a+b=3$, and want to find $a^{2} b^{2}$ and $a^{2}+b^{2}$. These are given by:

$$
\left\{\begin{array}{l}
a^{2} b^{2}=(a b)^{2}=(-1)^{2}=1 \\
a^{2}+b^{2}=(a+b)^{2}-2 a b=3^{2}-2(-1)=11
\end{array}\right.
$$

Therefore $x^{2}-11 x+1=0$ is the equation we want.
Another approach: expand $\left(x^{2}-3 x-1\right)\left(x^{2}+3 x-1\right)$ to get $x^{4}-11 x^{2}+1$, then substitute x for x^{2}. Why does this work?
(2) The equation $(x-1)^{2}-3(x-1)-1=0$, or $x^{2}-5 x+3=0$, has roots $a+1$ and $b+1$. Similarly, $(1 / x)^{2}-5(1 / x)+3=0$, or $1-5 x+3 x^{2}=0$, has roots $\frac{1}{a+1}$ and $\frac{1}{b+1}$. Therefore $\frac{1}{a+1}+\frac{1}{b+1}=\frac{5}{3}$.
(8) The recurrence is $x_{n}=3 x_{n-1}+x_{n-2}$, with $x_{0}=2$ and $x_{1}=3$.

Vieta's Formulas

The general version

In general, given the equation

$$
x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}=0
$$

we know the following:

- The sum of the roots (with multiplicity) is $-a_{n-1}$.
- The product of the roots is $(-1)^{n} a_{0}$.
- In general, $(-1)^{k} a_{n-k}$ is the sum of all k-fold products of the roots; for example, in a cubic equation with roots r_{1}, r_{2}, r_{3}, the coefficient of x is $r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}$.
(Don't forget that if x^{n} has a coefficient too, you should divide by it before applying these rules.)

Vieta's Formulas

Problems
(1) (HMMT 1998) Three of the roots of $x^{4}+a x^{2}+b x+c=0$ are $2,-3$, and 5 . Find the value of $a+b+c$.
(2) (AIME 2001) Find the sum of all the roots of the equation $x^{2001}+\left(\frac{1}{2}-x\right)^{2001}=0$.
(3) (AIME 1996) Suppose the roots of $x^{3}+3 x^{2}+4 x-11=0$ are a, b, and c, and the roots of $x^{3}+r x^{2}+s x+t=0$ are $a+b, b+c$, and $c+a$.

- By way of a warm-up, find r.
- The real problem is to find t.

Vieta's Formulas

Solutions

(1) The coefficient of x^{3} is 0 , so the sum of the roots is 0 , and the fourth root must be -4 . The polynomial factors as $(x-2)(x-5)(x+3)(x+4)$. Setting $x=1$ gives $1+a+b+c=(1-2)(1-5)(1+3)(1+4)=80$, so $a+b+c=79$.
(2) Using Vieta's formulas is left as an exercise. A shortcut solution is to observe that if x is a root, so is $\frac{1}{2}-x$, and each such pair yields a total of $\frac{1}{2}$. There are 2000 roots, so the total is 500 .
(3) - We have $r=-((a+b)+(b+c)+(a+c))=$ $=-2(a+b+c)=6$.

- To evaluate $t=-(a+b)(a+c)(b+c)$, it helps to observe $a+b+c=-3$ and write $a+b=-3-c$ and so on. Then $t=-P(-3)=23$.

More problems

Let α, β, γ be the roots of $x^{3}-3 x^{2}+1$.
(1) Find a polynomial whose roots are $\alpha+3, \beta+3$, and $\gamma+3$.
(2) Find a polynomial whose roots are $\frac{1}{\alpha+3}, \frac{1}{\beta+3}$, and $\frac{1}{\gamma+3}$.
(3) Compute $\frac{1}{\alpha+3}+\frac{1}{\beta+3}+\frac{1}{\gamma+3}$.
(9) Find a polynomial whose roots are α^{2}, β^{2}, and γ^{2}.
(5) Find a recurrence relation for $x_{n}=\alpha^{n}+\beta^{n}+\gamma^{n}$, and use it to compute $\alpha^{5}+\beta^{5}+\gamma^{5}$.

More problems

Solutions

(1) To increment all roots by 3 , substitute $x-3$ for x. This yields $x^{3}-12 x^{2}+45 x-53$.
(2) Reversing the coefficients to get $1-12 x+45 x^{2}-53 x^{3}$ yields a polynomial whose roots are reciprocals of the polynomial above. (Do you see why?)
(3) This is just the sum of the roots of the polynomial above: $\frac{45}{53}$.
(9) Observe that $x^{3}+3 x^{2}-1$ has roots $-\alpha,-\beta$, and $-\gamma$. Therefore $\left(x^{3}-3 x^{2}+1\right)\left(x^{3}+3 x^{2}-1\right)$ has roots $\pm \alpha, \pm \beta, \pm \gamma$ and factors as $\left(x^{2}-\alpha^{2}\right)\left(x^{2}-\beta^{2}\right)\left(x^{2}-\gamma^{2}\right)$. Replacing x^{2} by x yields our answer: $x^{3}-9 x^{2}+6 x-1$.
(5) The recurrence is $x_{n}=3 x_{n-1}-x_{n-3}$. We have $x_{0}=3$, $x_{1}=3$, and $x_{2}=9$, so $x_{3}=24, x_{4}=69$, and $x_{5}=198$.

Even more problems

(1) (Canada 1988) For some integer a, the equations $1988 x^{2}+a x+8891=0$ and $8891 x^{2}+a x+1988=0$ share a common root. Find a.
(2) (ARML 1989) If $P(x)$ is a polynomial in x such that for all x, $x^{23}+23 x^{17}-18 x^{16}-24 x^{15}+108 x^{14}=\left(x^{4}-3 x^{2}-2 x+9\right) \cdot P(x)$, compute the sum of the coefficients of $P(x)$.

Even more problems

Solutions

(1) Let x be the common root; then by subtracting the two equations, we have

$$
(8891-1988) x^{2}+(1988-8891)=0
$$

so $x^{2}-1=0$, and therefore $x= \pm 1$. Plug ± 1 into one of the equations to get $1988 \pm a+8891=0$ and therefore $a= \pm 10879$.
(2) The sum of the coefficients of $P(x)$ is $P(1)$. Setting $x=1$, we get

$$
1+23-18-24+108=(1-3-2+9) P(1)
$$

Solving, we obtain $P(1)=18$.

