Generating functions and linear recurrences

1 Useful facts

For any r satisfying $|r|<1$, the infinite sum $a+a r+a r^{2}+a r^{3}+\cdots$ converges to:

$$
\sum_{k \geq 0} a r^{k}=\frac{a}{1-r} .
$$

In particular, $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots=1$.

2 Problems

1. Find the generating functions for each of the following sequences:
(a) $1,1,1,1,1, \ldots$ (every term is 1)
(b) $1,0,1,0,1, \ldots$ (every even term is 1 , and every odd term is 0)
(c) $1,3,9,27,81, \ldots\left(\right.$ the n-th term is $\left.3^{n}\right)$
(d) $0,1,3,7,15, \ldots$ (the n-th term is $2^{n}-1$)
2. Find the sequences represented by each of the following generating functions:
(a) $f(x)=\frac{1}{1+x}$.
(b) $f(x)=1$.
(c) $f(x)=\frac{x^{2}}{1-2 x}$.
(d) $f(x)=\frac{1}{2-x}$.
(e) $f(x)=(x+1)^{5}$.
3. Find the generating functions for each of the following recursively defined sequences:
(a) $a_{n}=2 a_{n-1}+1$, with $a_{0}=0$.
(b) $b_{n}=b_{n-1}+2 b_{n-2}$, with $b_{0}=3$ and $b_{1}=6$.
(c) $c_{n}=6 c_{n-1}-c_{n-2}$, with $c_{0}=0$ and $c_{1}=1$.
(d) $d_{n}=6 d_{n-1}-d_{n-2}-2$, with $d_{0}=1$ and $d_{1}=2$.
(e) $e_{n}=e_{n-1}+e_{n-2}+e_{n-3}$, with $e_{0}=e_{1}=0$ and $e_{2}=1$.
4. Solve for the closed form of the sequences in problem 3. (Except possibly for the last one, which requires solving a cubic equation.)
5. Find a formula for the n-th term of the sequence whose generating function is $\frac{x^{3}}{1-x^{3}-x^{6}}$, in terms of n.
6. If the sequence g_{n} has generating function $G(x)=\frac{1}{1-3 x-x^{2}}$, find a recursive formula expressing g_{n} in terms of g_{n-1} and g_{n-2}.
7. Without using a calculator or performing long division, compute the first ten digits after the decimal of $\frac{1}{98}$.
8. Prove (you do not need to use generating functions for this) that the sequences defined in problem 3, parts (c) and (d), satisfy $c_{n}^{2}=\binom{d_{n}}{2}$ for all n.
(In fact, these two sequences give all the pairs for which such a statement holds.)
