Polynomials

C.J. Argue

Preliminaries

A polynomial p is a function of the form $p(x)=a_{n} x^{n}+a_{n-1} x n-1+\cdots+a_{1} x+a_{0}$ (assume that $a_{n} \neq 0$). The number n is the degree of the p. The number r is a root of p if $p(r)=0$. The polynomial p can always be written in the form $p(x)=a_{n}\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n}\right)$, where r_{1}, \ldots, r_{n} are complex numbers, not necessarily distinct. r_{1}, \ldots, r_{n} are roots of p, and they are the only roots.

Vieta's Formulas

The sum of the roots of p, namely $r_{1}+r_{2}+\cdots+r_{n}$ is given by the formula $\frac{-a_{n-1}}{a_{n}}$. The product of the roots of p, namely $r_{1} r_{2} \cdots r_{n}$ is $(-1)^{n} \frac{a_{0}}{a_{n}}$. A particularly common example is when $p(x)=a x^{2}+b x+c$. In this case, the sum of the roots of p is $\frac{-b}{a}$ and the product of the roots of p is $\frac{c}{a}$.

Problems

1. (02 AMC 10B \#10) Suppose that a and b are nonzero real numbers, and that the equation $x^{2}+a x+b=0$ has solutions a and b. Compute the pair (a, b).
2. ($05 \mathrm{AMC} 10 \mathrm{~A} \# 10$) There are two values of a for which the equation $4 x^{2}+a x+8 x+9=0$ has only one solution for x. Compute the sum of those values of a.
3. (02 AMC 10A \#14) Both roots of the quadratic equation $x^{2}-63 x+k=0$ are prime numbers. Compute the number of possible values of k.
4. ($05 \mathrm{AMC} 10 \mathrm{~B} \# 16$) The quadratic equation $x^{2}+m x+n=0$ has roots that are twice those of $x^{2}+p x+m=0$, and none of m, n, and p is zero. Compute n / p.
5. (03 AMC 10A \#18, adapted) Compute the sum of the reciprocals of the roots of the equation $\frac{2017}{2018} x+1+\frac{1}{x}=0$.
6. ('00 AMC $10 \# 24$) Let f be a function for which $f\left(\frac{x}{3}\right)=x^{2}+x+1$. Find the sum of all values of z for which $f(3 z)=7$.
7. (07 PUMaC Algebra B \#3) Compute all values of b such that the difference between the maximum and minimum values of $f(x)=x^{2}-b x-1$ on the interval $[0,1]$ is 1 .
8. (01 AIME I \#3) Compute the sum of the roots, real and non-real, of the equation $x^{2017}+\left(\frac{1}{2}-x\right)^{2017}=0$, given that there are no multiple roots.
9. (08 PUMaC Algebra B \#5) Let $p(x)=x^{5}+3 x^{4}-4 x^{3}-8 x^{2}+6 x-1$ and $q(x)=$ $x^{5}-3 x^{4}-2 x^{3}+10 x^{2}-6 x+1$. How many real numbers r are roots of both $p(x)$ and $q(x)$?
10. (07 PUMaC Algebra $\mathrm{B} \# 8$) For how many rational numbers p is the area of the triangle formed by the intercepts and vertex of $f(x)=-x^{2}+4 p x-p+1$ an integer?
11. (05 AIME I \#6) Compute the product of the nonreal roots of $x^{4}-4 x^{3}+6 x^{2}-4 x=2005$.
12. (07 PUMaC Algebra B \#9) Compute all values of a such that $x^{6}-6 x^{5}+12 x^{4}+a x^{3}+$ $12 x^{2}-6 x+1$ is nonnegative for all real x.
13. (03 AIME II \#9) Consider the polynomials $P(x)=x^{6}-x^{5}-x^{3}-x^{2}-x$ and $Q(x)=$ $x^{4}-x^{3}-x^{2}-1$. Given that z_{1}, z_{2}, z_{3}, and z_{4} are the roots of $Q(x)=0$, compute $P\left(z_{1}\right)+P\left(z_{2}\right)+P\left(z_{3}\right)+P\left(z_{4}\right)$.

Challenge Problems

1. (Putnam '86 B5) Let $f(x, y, z)=x^{2}+y^{2}+z^{2}+x y z$. Let $p(x, y, z), q(x, y, z), r(x, y, z)$ be polynomials with real coefficients satisfying

$$
f(p(x, y, z), q(x, y, z), r(x, y, z))=f(x, y, z)
$$

Prove or disprove the assertion that the sequence p, q, r consists of some permutation of $\pm x, \pm y, \pm z$, where the number of minus signs is 0 or 2 .
2. (Putnam '90 B5) Is there an infinite sequence $a_{0}, a_{1}, a_{2}, \ldots$ of nonzero real numbers such that for $n=1,2,3, \ldots$ the polynomial

$$
p_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

has exactly n distinct real roots?

