Complex Numbers

Andrew Kwon

Problems

If you are unfamiliar with any of the words or symbols below, please refer to the next page for a collection of the relevant information to help you!

1. Compute $|1+2 i|^{2}$ and $(1+2 i)^{2}$. Do the same for $|2+3 i|^{2},(2+3 i)^{2}$. Do you notice anything special about the numbers you find?
2. (F06 NYCIML B19) Compute $(1-i)^{10}$.
3. (F11 NYCIML B2) Let z be a complex number that satisfies $z+6 i=i z$. Find z.
4. (04 AMC 12B \#16) A function f is defined by $f(z)=i \bar{z}$, where $i=\sqrt{-1}$ and \bar{z} is the complex conjugate of z. How many values of z satisfy both $|z|=5$ and $f(z)=z$?
5. (17 AMC $12 \mathrm{~A} \# 17$) There are 24 different complex numbers z such that $z^{24}=1$. For how many of these is z^{6} a real number?
6. Using de Moivre's theorem, find formulas for $\cos 2 \theta, \cos 3 \theta$ in terms of $\cos \theta$.
7. (09 AMC $12 \mathrm{~A} \# 15$) For what value of n is $i+2 i^{2}+3 i^{3}+\cdots+n i^{n}=48+49 i$?
8. (F09 NYCIML B23) Find the complex number c such that the equation $x^{2}+4 x+6 i x+c=$ 0 has only one solution.
9. (09 AIME I \#2) There is a complex number z with imaginary part 164 and a positive integer n such that $\frac{z}{z+n}=4 i$. Find n.
10. (85 AIME \#3) Find c if a, b, c are positive integers which satisfy $c=(a+b i)^{3}-107 i$. (Hint: 107 is prime.)
11. (94 AIME \#8) The points $(0,0),(a, 11)$, and $(b, 37)$ are the vertices of an equilateral triangle. Find the value of $a b$. (Hint: is there a way to think of points in the plane as complex numbers?)
12. (97 AIME \#14) Let v and w be distinct, randomly chosen roots of the equation $z^{1997}-$ $1=0$. Let $\frac{m}{n}$ be the probability that $\sqrt{2+\sqrt{3}} \leq|v+w|$, where m and n are relatively prime positive integers. Find $m+n$.

Challenge Problems

1. If p is a prime number and $a_{0}, a_{1}, \ldots, a_{p-1}$ are rational numbers satisfying

$$
a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+\cdots+a_{p-1} \zeta^{p-1}=0
$$

2. (95 IMO) Let $p>2$ be a prime number and let $A=\{1,2, \ldots, 2 p\}$. Find the number of subsets of A each having p elements and whose sum is divisible by p. (Hint: Count the more general N_{k}, the number of subsets of A with p elements whose sum is congruent to $k \bmod p$ and consider $p^{\text {th }}$ roots of unity.)

Background

A complex number is a number of the form $z=a+b i$, where a, b are real numbers and i is the number satisfying $i^{2}=-1$. a is referred to as the real part of z, denoted by $\operatorname{Re} z$, and b is referred to as the imaginary part, denoted by $\operatorname{Im} z$. Addition and multiplication of imaginary numbers works the same way as multiplication of binomials; that is, if $z=a+b i, w=c+d i$, where $a, b, c, d \in \mathbb{R}$ then

$$
\begin{gathered}
z+w=(a+b i)+(c+d i)=(a+c)+(b+d) i, \\
\mathrm{w} z w=(a+b i)(c+d i)=a c+b d i^{2}+i(a d+b c)=(a c-b d)+i(a d+b c) .
\end{gathered}
$$

For a complex number $z=a+b i$, we define

- the conjugate of a z, denoted \bar{z}, is $a-b i$;
- the norm or modulus of z, denoted $|z|$, is $\sqrt{z \bar{z}}=\sqrt{a^{2}+b^{2}}$.

de Moivre's formula

One useful fact is that any complex number z can be written in the form

$$
z=|z| \operatorname{cis} \theta
$$

where $0 \leq \theta<2 \pi$, and $\operatorname{cis} \theta=\cos \theta+i \sin \theta$. Often, θ is referred to as the argument of z. Then, de Moivre's formula states that for any $n \in \mathbb{N}, z^{n}=|z|^{n} \operatorname{cis}(n \theta)$. This provides an important connection between complex numbers and trigonometry.

