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Sequences and Series
Emily Zhu[1]

October 1, 2017

1 Problems

1. Let an be a sequence defined by a1 = 0, an = an−1 + 3 for n ≥ 2 and let Sn =
∑n

k=1 ak. Find
S2017.

2. How many geometric sequences with integer ratios have a1 = 3 and an = 12288 for some n?

3. The first three terms of a geometric progression are
√

3, 3
√

3, and 6
√

3. What is the fourth
term? [2]

4. Compute
∑∞

n=1
2n−1
3n−1 .[3]

5. Let a1, a2, . . . , ak be a finite arithmetic sequence with a4 + a7 + a10 = 17 and
∑14

n=4 an = 77.
If ak = 13, what is k?[4]

6. Let an be a sequence with a1 = 1, a2 = 3 and an = 2an−1 + an−2. Find the remainder when
a2017 is divided by 4.

7. Let a0 = a1 = 1, an+1 = anan−1 + 1. Show that 4 is not a divisor of a2017.
[5]

8. Let a1 = a2 = 1, a3 = −1 and an = an−1an−3 for n ≥ 4. Find a2017.
[5]

9. Find the value of a2 +a4 + · · ·+a98 if an is an arithmetic progression with common difference
1 and a1 + a2 + · · ·+ a98 = 137. [6]

10. Let a0 = 1, a1 = 3 and an =
a2n−1+1

2 for n > 2. Let Sn = 1
an−1 +

∑n−1
k=0

1
ak+1 . Find S2017.

11. A sequence is defined as follows a1 = a2 = a3 = 1, and, for all positive integers n, an+3 =
an+2 + an+1 + an. Given that a28 = 6090307, a29 = 11201821, and a30 = 20603361, find the
remainder when

∑28
k=1 ak is divided by 1000.[7]

12. Let a1 = a2 = 1 and an =
a2n−1+2

an−2
for n ≥ 3. Show that every ai is an integer. [5]

[1]Many thanks to David Altizio and Elliot Haney for their help in compiling problems!
[2]AMC 12A 2014 #7
[3]NYCIML S11A3
[4]AHSME 1993 #21
[5]Arthur Engel’s Problem Solving Strategies
[6]AIME 1984 #1
[7]AIME II 2006 #11
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2 Challenge Problems

1. The real numbers a0, a1, . . . , a2013 and b0, b1, . . . , b2013 satisfy an = 1
63

√
2n + 2 + an−1 and

bn = 1
96

√
2n + 2 − bn−1 for every integer n = 1, 2, . . . , 2013. If a0 = b2013 and b0 = a2013,

compute
∑2013

k=1 (akbk−1 − ak−1bk). [8]

2. Start with two positive integers x1, x2, both less than 10000, and for k ≥ 3 let xk be the
smallest of the absolute values of the pairwise differences of the preceding terms. Prove that
we always have x21 = 0. [9]

3 Background

A sequence is an enumerated/ordered collection of terms which can be finite/infinite. A series is
formed by taking cumulative partial sums of a sequence. For a sequence of terms a1, a2, . . . , an, we
denote

∑n
i=1 ai = a1 + a2 + · · ·+ an.

Remark 1. Sequences are often defined by recurrences which give a start term x0 and/or x1 and
then some relation between xn and previous terms. Sometimes they can also be described by a
closed formula.

Example 2 (Arithmetic Sequence/Series). Given a sequence starting at a1 with an+1 = an + d for

some fixed d, then an+1 = a1 + nd and
∑n

i=1 ai = n(2a1+(n−1)d)
2

Example 3 (Geometric Sequence/Series). Given a sequence starting at b1 with bn+1 = anr for

some fixed r, then an+1 = a1r
n and

∑n
i=1 ai = a1(1−rn)

1−r . If |r| < 1, we have that the infinite
geometric series has sum a

1−r .

Remark 4. A pretty good way to approach a lot of sequence/series problems is to write out a few
(or many, if you so desire) terms and look for a pattern.

Some series may “telescope” if you rewrite them the right way:

Example 5. Evaluate the sum

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

99 · 100
.

Proof. If we rewrite this as 1
2 = 1− 1

2 , 1
6 = 1

2 −
1
3 , 1

12 = 1
3 −

1
4 , and so on, then the sum becomes(

1−
�
��
1

2

)
+

(
�
��
1

2
−

�
��
1

3

)
+

(
�
��
1

3
−

�
��
1

4

)
+ · · ·+

(
�
��
1

99
− 1

100

)
= 1− 1

100
=

99

100

[8]Fall OMO 2013
[9]AUO 1976
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4 Selected Solutions

For solutions to AMC, AHSME, AIME, NYCIML problems, see the links on the Archive page.

1. an defines an arithmetic sequence. By the formula in example 2,
∑2017

i=1 = 2017(2·0+(2016)3
2 =

6099408.

6. There are only 4 · 4 possible values of (an, an+1) (mod 4). Since an+2 depends only on an and
an+1, the sequence will eventually repeat itself.

Computing the first few values of an (mod 4) we have a0 ≡ 1, a1 ≡ 3, a2 ≡ 3, a3 ≡ 1, a4 ∼= 1,
a5 ∼= 3. Since (a0, a1) = (a4, a5), this pattern will repeat with period 4. 2017 ≡ 1 (mod 4) so
a2017 ≡ a1 ≡ 3, so the remainder is 3.

7. Similarly to problem 6, there are only 4 · 4 possible values of (an, an+1) (mod 4). Since an+2

depends only on an and an+1, the sequence will eventually repeat itself.

a0 ≡ 1, a1 ≡ 1, a2 ≡ 3, a3 ≡ 0, a4 ≡ 1, a5 ≡ 1. Since (a0, a1) = (a4, a5), this pattern will
repeat with period 4. 2017 ≡ 1 (mod 4) so a2017 ≡ a1 ≡ 1. Since a2017 6≡ 0 (mod 4), a2017 is
not divisible by 4.

8. Similar to questions 6 and 7–the repeating pattern is 1, 1,−1,−1,−1, 1,−1, 1, 1,−1,−1,−1, 1,−1, . . . .
The period of this sequences is 7 and 2017 ∼= 1 (mod 7) so the answer is the same as a1, which
is 1.

10. Using partial fractions,
a

ak+1 − 1
=

1

ak − 1
+

1

ak + 1

Rearrange to get
1

ak + 1
=

1

ak − 1
− a

ak+1 − 1

Plug this in for each term of the sum to get

Sn =
1

an − 1
+

a

a0 − 1
+

n−1∑
k=1

1

ak − 1
− 1

ak+1 − 1

The summation telescopes leaving

Sn =
1

an − 1
+

a

a0 − 1
+

1

an − 1
− a

an − 1
=

1

2
+

1

2
= 1
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