Sequences and Series

Emily Zhu ${ }^{[1]}$

October 1, 2017

1 Problems

1. Let a_{n} be a sequence defined by $a_{1}=0, a_{n}=a_{n-1}+3$ for $n \geq 2$ and let $S_{n}=\sum_{k=1}^{n} a_{k}$. Find S_{2017}.
2. How many geometric sequences with integer ratios have $a_{1}=3$ and $a_{n}=12288$ for some n ?
3. The first three terms of a geometric progression are $\sqrt{3}, \sqrt[3]{3}$, and $\sqrt[6]{3}$. What is the fourth term? ${ }^{[2]}$
4. Compute $\sum_{n=1}^{\infty} \frac{2^{n}-1}{3^{n-1}}$. ${ }^{[3]}$
5. Let $a_{1}, a_{2}, \ldots, a_{k}$ be a finite arithmetic sequence with $a_{4}+a_{7}+a_{10}=17$ and $\sum_{n=4}^{14} a_{n}=77$. If $a_{k}=13$, what is $k ?^{[4]}$
6. Let a_{n} be a sequence with $a_{1}=1, a_{2}=3$ and $a_{n}=2 a_{n-1}+a_{n-2}$. Find the remainder when a_{2017} is divided by 4 .
7. Let $a_{0}=a_{1}=1, a_{n+1}=a_{n} a_{n-1}+1$. Show that 4 is not a divisor of $a_{2017} \cdot{ }^{[5]}$
8. Let $a_{1}=a_{2}=1, a_{3}=-1$ and $a_{n}=a_{n-1} a_{n-3}$ for $n \geq 4$. Find a_{2017}. ${ }^{[5]}$
9. Find the value of $a_{2}+a_{4}+\cdots+a_{98}$ if a_{n} is an arithmetic progression with common difference 1 and $a_{1}+a_{2}+\cdots+a_{98}=137$. ${ }^{[6]}$
10. Let $a_{0}=1, a_{1}=3$ and $a_{n}=\frac{a_{n-1}^{2}+1}{2}$ for $n>2$. Let $S_{n}=\frac{1}{a_{n}-1}+\sum_{k=0}^{n-1} \frac{1}{a_{k}+1}$. Find S_{2017}.
11. A sequence is defined as follows $a_{1}=a_{2}=a_{3}=1$, and, for all positive integers $n, a_{n+3}=$ $a_{n+2}+a_{n+1}+a_{n}$. Given that $a_{28}=6090307, a_{29}=11201821$, and $a_{30}=20603361$, find the remainder when $\sum_{k=1}^{28} a_{k}$ is divided by 1000. ${ }^{[7]}$
12. Let $a_{1}=a_{2}=1$ and $a_{n}=\frac{a_{n-1}^{2}+2}{a_{n-2}}$ for $n \geq 3$. Show that every a_{i} is an integer. ${ }^{[5]}$
[^0]
2 Challenge Problems

1. The real numbers $a_{0}, a_{1}, \ldots, a_{2013}$ and $b_{0}, b_{1}, \ldots, b_{2013}$ satisfy $a_{n}=\frac{1}{63} \sqrt{2 n+2}+a_{n-1}$ and $b_{n}=\frac{1}{96} \sqrt{2 n+2}-b_{n-1}$ for every integer $n=1,2, \ldots, 2013$. If $a_{0}=b_{2013}$ and $b_{0}=a_{2013}$, compute $\sum_{k=1}^{2013}\left(a_{k} b_{k-1}-a_{k-1} b_{k}\right)$. ${ }^{[8]}$
2. Start with two positive integers x_{1}, x_{2}, both less than 10000 , and for $k \geq 3$ let x_{k} be the smallest of the absolute values of the pairwise differences of the preceding terms. Prove that we always have $x_{21}=0$. ${ }^{[9]}$

3 Background

A sequence is an enumerated/ordered collection of terms which can be finite/infinite. A series is formed by taking cumulative partial sums of a sequence. For a sequence of terms $a_{1}, a_{2}, \ldots, a_{n}$, we denote $\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n}$.

Remark 1. Sequences are often defined by recurrences which give a start term x_{0} and/or x_{1} and then some relation between x_{n} and previous terms. Sometimes they can also be described by a closed formula.

Example 2 (Arithmetic Sequence/Series). Given a sequence starting at a_{1} with $a_{n+1}=a_{n}+d$ for some fixed d, then $a_{n+1}=a_{1}+n d$ and $\sum_{i=1}^{n} a_{i}=\frac{n\left(2 a_{1}+(n-1) d\right)}{2}$

Example 3 (Geometric Sequence/Series). Given a sequence starting at b_{1} with $b_{n+1}=a_{n} r$ for some fixed r, then $a_{n+1}=a_{1} r^{n}$ and $\sum_{i=1}^{n} a_{i}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$. If $|r|<1$, we have that the infinite geometric series has sum $\frac{a}{1-r}$.

Remark 4. A pretty good way to approach a lot of sequence/series problems is to write out a few (or many, if you so desire) terms and look for a pattern.

Some series may "telescope" if you rewrite them the right way:
Example 5. Evaluate the sum

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{99 \cdot 100}
$$

Proof. If we rewrite this as $\frac{1}{2}=1-\frac{1}{2}, \frac{1}{6}=\frac{1}{2}-\frac{1}{3}, \frac{1}{12}=\frac{1}{3}-\frac{1}{4}$, and so on, then the sum becomes

$$
\left(1-\frac{1}{\frac{1}{2}}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{99}-\frac{1}{100}\right)=1-\frac{1}{100}=\frac{99}{100}
$$

[^1]
4 Selected Solutions

For solutions to AMC, AHSME, AIME, NYCIML problems, see the links on the Archive page.

1. a_{n} defines an arithmetic sequence. By the formula in example $2, \sum_{i=1}^{2017}=\frac{2017(2 \cdot 0+(2016) 3}{2}=$ 6099408.
2. There are only $4 \cdot 4$ possible values of $\left(a_{n}, a_{n+1}\right)(\bmod 4)$. Since a_{n+2} depends only on a_{n} and a_{n+1}, the sequence will eventually repeat itself.
Computing the first few values of $a_{n}(\bmod 4)$ we have $a_{0} \equiv 1, a_{1} \equiv 3, a_{2} \equiv 3, a_{3} \equiv 1, a_{4} \cong 1$, $a_{5} \cong 3$. Since $\left(a_{0}, a_{1}\right)=\left(a_{4}, a_{5}\right)$, this pattern will repeat with period $4.2017 \equiv 1(\bmod 4)$ so $a_{2017} \equiv a_{1} \equiv 3$, so the remainder is 3 .
3. Similarly to problem 6 , there are only $4 \cdot 4$ possible values of $\left(a_{n}, a_{n+1}\right)(\bmod 4)$. Since a_{n+2} depends only on a_{n} and a_{n+1}, the sequence will eventually repeat itself.
$a_{0} \equiv 1, a_{1} \equiv 1, a_{2} \equiv 3, a_{3} \equiv 0, a_{4} \equiv 1, a_{5} \equiv 1$. Since $\left(a_{0}, a_{1}\right)=\left(a_{4}, a_{5}\right)$, this pattern will repeat with period $4.2017 \equiv 1(\bmod 4)$ so $a_{2017} \equiv a_{1} \equiv 1$. Since $a_{2017} \not \equiv 0(\bmod 4), a_{2017}$ is not divisible by 4 .
4. Similar to questions 6 and 7 -the repeating pattern is $1,1,-1,-1,-1,1,-1,1,1,-1,-1,-1,1,-1, \ldots$. The period of this sequences is 7 and $2017 \cong 1(\bmod 7)$ so the answer is the same as a_{1}, which is 1 .
5. Using partial fractions,

$$
\frac{a}{a_{k+1}-1}=\frac{1}{a_{k}-1}+\frac{1}{a_{k}+1}
$$

Rearrange to get

$$
\frac{1}{a_{k}+1}=\frac{1}{a_{k}-1}-\frac{a}{a_{k+1}-1}
$$

Plug this in for each term of the sum to get

$$
S_{n}=\frac{1}{a_{n}-1}+\frac{a}{a_{0}-1}+\sum_{k=1}^{n-1} \frac{1}{a_{k}-1}-\frac{1}{a_{k+1}-1}
$$

The summation telescopes leaving

$$
S_{n}=\frac{1}{a_{n}-1}+\frac{a}{a_{0}-1}+\frac{1}{a_{n}-1}-\frac{a}{a_{n}-1}=\frac{1}{2}+\frac{1}{2}=1
$$

[^0]: ${ }^{[1]}$ Many thanks to David Altizio and Elliot Haney for their help in compiling problems!
 ${ }^{[2]}$ AMC 12A 2014 \#7
 ${ }^{[3]}$ NYCIML S11A3
 ${ }^{[4]}$ AHSME 1993 \#21
 ${ }^{[5]}$ Arthur Engel's Problem Solving Strategies
 ${ }^{[6]}$ AIME 1984 \#1
 ${ }^{[7]}$ AIME II 2006 \#11

[^1]: ${ }^{[8]}$ Fall OMO 2013
 ${ }^{[9]}$ AUO 1976

