Polynomials

Varsity Practice - Annie Xu
JV Practice - Ariel Uy

1 JV Warm-Up

1. The area of a rectangle is 18 and the length of a diagonal is 8 . Find the perimeter.
2. Given that $x+y+z=7$ and $x^{2}+y^{2}+z^{2}=10$, compute $x y+y z+x z$.
3. A parabola with vertex $\left(\frac{1}{4},-\frac{9}{8}\right)$ has equation $a x^{2}+b x+c=0$, where $a>0$ and $a+b+c$ is an integer. Compute the smallest possible value of a.

2 JV Problems

1. For each of the following polynomials, find the product and sum of the roots. Do you notice a pattern?
(a) $x^{2}+x-6$
(b) $x^{2}+14 x+42$
(c) $8 x^{2}-10 x+3$
(d) $x^{3}-4 x^{2}-9 x+36$
2. Let r, s, and t be the roots of $f(x)=x^{3}-4 x^{2}-7 x+10$. Find $r^{2}+s^{2}+t^{2}$.
3. Let r, s, and t be the roots of $f(x)=2 x^{3}-4 x^{2}+3 x-9$. Find $(2-r)(2-s)(2-t)$.
4. Let a and b be the roots of the equation $x^{2}-m x+2=0$. Suppose that $a+\frac{1}{b}$ and $b+\frac{1}{a}$ are the roots of the equation $x^{2}-p x+q=0$. What is q ?
5. Suppose the roots of $x^{3}+3 x^{2}+4 x-11=0$ are a, b, and c, and the roots of $x^{3}+r x^{2}+s x+t=0$ are $a+b, b+c$, and $c+a$. Find r and t.
6. Three of the roots of $x^{4}+a x^{2}+b x+c=0$ are $3,-6,5$. Find the value of $a+b+c$.
7. A quadratic equation $a x^{2}-2 a x+b=0$ has two real solutions. What is the average of these two solutions?
8. If $P(x)$ is a polynomial, and we have that $x^{20}+13 x^{12}-4 x^{3}+9=\left(x^{2}-3 x+17\right) \times P(x)$ for all x, compute the sum of the coefficients of $P(x)$.

3 JV Challenge Problems

1. Find the sum of all the roots of the equation $x^{2001}+\left(\frac{1}{2}-x\right)^{2001}=0$.
2. Let $P(x)$ be a fifth-degree polynomial with integer coefficients and that has at least one integer root. If $P(2)=13$ and $P(10)=5$, compute a value of x that must satisfy $P(x)=0$.

4 Varsity Warm-Up

1. (Vieta's Formula). Let the polynomial $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ have roots $r_{1}, r_{2}, \ldots, r_{n}$, listed with multiplicity. Determine (and prove) a formula for the sum of all possible k-fold products of the roots.
2. (Newton's Sums). Consider a polynomial $P(x)$ of degree n,
$P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$. Let $P(x)=0$ have roots $x_{1}, x_{2}, \ldots, x_{n}$. Define the following sums:

$$
\begin{gathered}
P_{1}=x_{1}+x_{2}+\cdots+x_{n} \\
P_{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \\
\vdots \\
P_{k}=x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}
\end{gathered}
$$

Prove that:

$$
\begin{array}{lccc}
& a_{n} P_{1}+ & a_{n-1} & =0 \\
a_{n} P_{2}+ & a_{n-1} P_{1}+ & 2 a_{n-2} & =0 \\
a_{n} P_{3}+ & a_{n-1} P_{2}+ & a_{n-2} P_{1}+ & 3 a_{n-3}
\end{array}=0
$$

3. (Descartes' Law of Signs). Given a polynomial $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, determine and prove an upper bound on the number of positive real roots of P based on its coefficients. For extra fun, also prove an upper bound on the number of negative real roots.

5 Varsity Problems

1. If $P(x)$ is a polynomial, and we have that $x^{20}+13 x^{12}-4 x^{3}+9=\left(x^{2}-3 x+17\right) \times P(x)$ for all x, compute the sum of the coefficients of $P(x)$.
2. Three of the roots of $x^{4}+a x^{2}+b x+c=0$ are $3,-6,5$. Find the value of $a+b+c$.
3. Let w, x, y, z be the roots of the polynomial $P(a)=5 a^{4}-7 a^{3}+a^{2}-a+9$. Compute $\frac{1}{w+2} \frac{1}{x+2} \frac{1}{y+2} \frac{1}{z+2}$.
4. (ARML 1985) Let $P(x)$ be a fifth-degree polynomial with integer coefficients and that has at least one integer root. If $P(2)=13$ and $P(10)=5$, compute a value of x that must satisfy $P(x)=0$.
5. (AIME 2001) Find the sum of all the roots of the equation $x^{2001}+\left(\frac{1}{2}-x\right)^{2001}=0$.
6. Determine the sum of the squares of the roots (i.e. P_{2} from the hw) of the polynomial $P(x)=3 x^{3}+6 x^{2}-x+8$. Can you find a closed form using the coefficients of any polynomial $P ?$
7. (ARML 2006) Determine the sum of the y-coordinates of the four points of intersection of $y=x^{4}-5 x^{2}-x+4$ and $y=x^{2}-3 x$.
8. Let $x_{1}, x_{2}, x_{3}, x_{4}$ be real numbers such that $x_{1}+x_{2}+x_{3}+x_{4}=0$ and $x_{1}^{7}+x_{2}^{7}+x_{3}^{7}+x_{4}^{7}=0$. Compute the value of $x_{1}\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{1}+x_{4}\right)$.
9. (ARML 1983) Let a, b, and c be the sides of triangle ABC. If a^{2}, b^{2}, and c^{2} are the roots of the equation $x^{3}-P x^{2}+Q x-R=0$ (where P, Q, R are constants), express

$$
\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}
$$

in terms of one or more of the coefficients P, Q, R.
10. (PUMaC 2006) Find all pairs of real numbers (a, b) so that there exists a polynomial $P(x)$ with real coefficients and $P(P(x))=x^{4}-8 x^{3}+a x^{2}+b x+40$.
11. (PUMaC 2006) Suppose that $P(x)$ is a polynomial with the property that there exists another polynomial $Q(x)$ to satisfy $P(x) Q(x)=P\left(x^{2}\right) . P(x)$ and $Q(x)$ may have complex coefficients. If $P(x)$ is a quintic with distinct complex roots r_{1}, \ldots, r_{5}, find all possible values of $\left|r_{1}\right|+$ $\cdots+\left|r_{5}\right|$.

6 Varsity Challenge Problems

1. (Putnam 2003). Let $f(z)=a z^{4}+b z^{3}+c z^{2}+d^{z}+e=a\left(z-r_{1}\right)\left(z-r_{2}\right)\left(z-r_{3}\right)\left(z-r_{4}\right)$ where a, b, c, d, e are integers, and $a \neq 0$. Show that if $r_{1}+r_{2}$ is a rational number and $r_{1}+r_{2} \neq r_{3}+r_{4}$, then $r_{1} r_{2}$ is a rational number.
2. (Mock Putnam Exam UTK 2001). Let $f(x)$ be a polynomial with integer coefficients. Suppose there exist distinct integers a, b, c such that $f(a)=f(b)=f(c)=2000$. Show that there is no integer d such that $f(d)=2001$.
