Algebra Review 1

Annie Xu and David Altizio

1 JV Mock Individual Round

1. Compute all real valus x for which $4 x^{2}+4 x^{4}+4 x^{6}+\cdots=5$
2. (AMC10 2003) What is the sum of the reciprocals of the roots of the equation

$$
\frac{2003}{2004} x+1+\frac{1}{x}=0 ?
$$

3. (AMC12 2014) The first three terms of a geometric progression are $\sqrt{3}$, $\sqrt[3]{3}$, and $\sqrt[6]{3}$. What is the fourth term?
4. (PUMaC 2010) Assume that $f(a+b)=f(a)+f(b)+a b$ and that $f(75)-f(51)=1230$. Find $f(100)$.
5. Find the sum of the coefficients of the polynomial $(57 x-55)^{4}$.
6. (PUMaC 2011) A polynomial p can be written as

$$
p(x)=x^{6}+3 x^{5}-3 x^{4}+a x^{3}+b x^{2}+c x+d
$$

Given that all roots of $p(x)$ are equal to either m or n where m, n are integers, compute $p(2)$.
7. Let the recurrence a_{n} satisfy $a_{n}=\frac{1+a_{n-1}}{a_{n-2}}$ where $a_{0}=4$ and $a_{1}=7$. Compute a_{209}.
8. (Math League HS 2011-2012) If a is real, what is the only real number that could be a multiple root of $x^{3}+a x+1=0$?
9. Solve the recurrence $a_{n}=2 a_{n-1}+3$ for $n \geq 2$, where $a_{1}=1$.
10. The four zeros of the polynomial $x^{4}+j x^{2}+k x+225$ are distinct real numbers in arithmetic progression. Compute the value of j.

2 Varsity Mock Individual Round

1. Solve the recurrence $a_{n}=2 a_{n-1}+a_{n-2}-2 a_{n-3}$ where $a_{0}=5, a_{1}=-1$, and $a_{2}=7$.
2. (PUMaC 2010) Assume that $f(a+b)=f(a)+f(b)+a b$ and that $f(75)-f(51)=1230$. Find $f(100)$.
3. Find the sum of the coefficients of the polynomial $(57 x-55)^{4}$.
4. (PUMaC 2011) A polynomial p can be written as

$$
p(x)=x^{6}+3 x^{5}-3 x^{4}+a x^{3}+b x^{2}+c x+d .
$$

Given that all roots of $p(x)$ are equal to either m or n where m, n are integers, compute $p(2)$.
5. Let the recurrence a_{n} satisfy $a_{n}=\frac{1+a_{n-1}}{a_{n-2}}$ where $a_{0}=4$ and $a_{1}=7$. Compute a_{209}.
6. (PUMaC 2011) Suppose the polynomial $x^{3}-x^{2}+b x+c$ has real roots a, b, c. What is the square of the minimum value of $a b c$?
7. Solve the recurrence $a_{n}=2 a_{n-1}+3$ for $n \geq 2$, where $a_{1}=1$.
8. The four zeros of the polynomial $x^{4}+j x^{2}+k x+225$ are distinct real numbers in arithmetic progression. Compute the value of j.
9. Suppose that p, q are two-digit prime numbers such that $p^{2}-q^{2}=2 p+6 q+8$. Compute the largest possible value of $p+q$.
10. (AIME 2007) A sequence is defined over non-negative integral indexes in the following way: $a_{0}=a_{1}=3, a_{n+1} a_{n-1}=a_{n}^{2}+2007$. Find the greatest integer that does not exceed $\frac{a_{2006}^{2}+a_{2007}^{2}}{a_{2006} a_{2007}}$.

3 Team Round

1. (Math League HS 2011-2012) There are an infinite number of polynomials P for which $P(x+$ $5)-P(x)=2$ for all x. What is the least possible value of $P(4)-P(2)$?
2. (AMC10 2004) Let a_{1}, a_{2}, \cdots, be a sequence such that $a_{1}=1$ and $a_{2 n}=n \cdot a_{n}$ for any positive integer n. What is the value of $a_{2^{100}}$?
3. (CMIMC 2018) Let $P(x)=x^{2}+4 x+1$. What is the product of all real solutions to the equation $P(P(x))=0$?
4. Let p and q be real numbers with $|p|<1$ and $|q|<1$ such that

$$
p+p q+p q^{2}+p q^{3}+\cdots=2 \quad \text { and } \quad q+q p+q p^{2}+q p^{3}+\cdots=3
$$

What is $100 p q$?
5. (CMIMC 2017) Suppose $P(x)$ is a quadratic polynomial with integer coefficients satisfying the identity

$$
P(P(x))-P(x)^{2}=x^{2}+x+2016
$$

for all real x. What is $P(1)$?
6. (HMMT ??) Let $Q(x)=x^{2}+2 x+3$, and suppose that $P(x)$ is a polynomial such that

$$
P(Q(x))=x^{6}+6 x^{5}+18 x^{4}+32 x^{3}+35 x^{2}+22 x+8
$$

Compute $P(2)$.
7. (CMIMC 2018) Suppose P is a cubic polynomial satisfying $P(0)=3$ and

$$
\left(x^{3}-2 x+1-P(x)\right)\left(2 x^{3}-5 x^{2}+4-P(x)\right) \leq 0
$$

for all $x \in \mathbb{R}$. Determine all possible values of $P(-1)$.
8. (OMO, Ray Li) Let a_{1}, a_{2}, \ldots be a sequence defined by $a_{1}=1$ and for $n \geq 1$,

$$
a_{n+1}=\sqrt{a_{n}^{2}-2 a_{n}+3}+1
$$

Find a_{513}.
9. (AMC12 2005) Let $P(x)=(x-1)(x-2)(x-3)$. For how many polynomials $Q(x)$ does there exist a polynomial $R(x)$ of degree 3 such that $P(Q(x))=P(x) \cdot R(x)$?
10. (AoPS) Suppose $\left(a_{n}\right)_{n \geq 1}$ is a sequence of real numbers satisfying

$$
a_{2 n}=4 a_{n}=2 a_{2 n-1}+\frac{1}{4}
$$

for all $n \geq 1$. Compute the sum $a_{1}+\cdots+a_{31}$.

