Algebra

$$
\text { Polynomials in a different basis }
$$

Western PA ARML Practice

Warm-up

1. Express $\binom{x}{3}=\frac{x(x-1)(x-2)}{3!}$ in the basis $\left\{1, x, x^{2}, x^{3}\right\}$. That is, find $a_{0}, a_{1}, a_{2}, a_{3}$ such that

$$
\binom{x}{3}=a_{0} \cdot 1+a_{1} \cdot x+a_{2} \cdot x^{2}+a_{3} \cdot x^{3} .
$$

2. Express x^{3} in the basis $\left\{1,\binom{x}{1},\binom{x}{2},\binom{x}{3}\right\}$. That is, find $a_{0}, a_{1}, a_{2}, a_{3}$ such that

$$
x^{3}=a_{0} \cdot 1+a_{1} \cdot\binom{x}{1}+a_{2} \cdot\binom{x}{2}+a_{3} \cdot\binom{x}{3} .
$$

3. Express x^{2} in the basis $\{(x-2)(x-4),(x-2)(x-7),(x-4)(x-7)\}$.
4. Express $\cos (4 \theta)$ in the basis $\left\{1, \cos \theta, \cos ^{2} \theta, \cos ^{3} \theta, \cos ^{4} \theta\right\}$.

Binomial coefficients

1. Find a formula for the pentagonal numbers, which begin $0,1,5,12,22,35,51,70, \ldots$.
2. A polynomial $P(x)$ of degree 2014 satisfies $P(k)=2^{k}$ for $k \in\{0,1, \ldots, 2014\}$. Find $P(2015)$.

3 . What if we replace 2 by an arbitrary value r in the above problem?
4. The formula for $1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+\cdots+n^{3}$ is some degree 4 polynomial in n. Find the formula.
5. Using the identity $\sum_{n=0}^{\infty}\binom{n}{k} 2^{-n}=2$, which holds for all values of k, find $\sum_{n=0}^{\infty} \frac{n^{3}}{2^{n}}$.
6. Prove the identity $\sum_{n=0}^{\infty}\binom{n}{k} 2^{-n}=2$.

Interpolation

1. (Lagrange Interpolation) Let x_{0}, \ldots, x_{n} be distinct values. Define

$$
\ell_{i}(x)=\prod_{j \neq i} \frac{x-x_{j}}{x_{i}-x_{j}} .
$$

Then the unique polynomial of degree $\leq n$ that passes through the points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$, $\ldots,\left(x_{n}, y_{n}\right)$ is the sum $y_{0} \ell_{0}(x)+y_{1} \ell_{1}(x)+\cdots+y_{n} \ell_{n}(x)$.
2. Find a quadratic polynomial $P(x)$ such that $P(2)=11, P(4)=29$, and $P(7)=71$.
3. Find a general formula for all cubic polynomials $P(x)$ such that $P(2)=11, P(4)=29$, and $P(7)=71$.
4. Simplify

$$
\frac{(x-2)(x-4)}{(7-2)(7-4)}+\frac{(x-2)(x-7)}{(4-2)(4-7)}+\frac{(x-4)(4-7)}{(2-4)(2-7)} .
$$

5. If $P(x)$ is a degree 4 polynomial that satisfies $P(k)=k^{5}$ for $k \in\{1,2,3,5,8\}$, find $P(0)$.
6. (USAMO 1975) A polynomial $P(x)$ of degree n satisfies $P(k)=\frac{k}{k+1}$ for $k \in\{0,1, \ldots, n\}$. Find $P(n+1)$.

Miscellaneous

Horner's method for evaluating polynomials is to express $a_{n} x_{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ as

$$
\left(\left(\cdots\left(\left(a_{n} \cdot x+a_{n-1}\right) \cdot x+a_{n-2}\right) \cdot x+a_{n-3}\right) \cdots+a_{1}\right) \cdot x+a_{0}
$$

For example, $4 x^{3}+3 x^{2}+2 x+1$ becomes $((4 \cdot x+3) \cdot x+2) \cdot x+1$.

1. A sequence $\left(x_{n}\right)$ is defined by $x_{0}=1$ and

$$
x_{n}=2 x_{n-1}+\binom{100}{n}
$$

Compute x_{100}.
2. (ARML 1995) Compute the largest prime factor of:

$$
3 \cdot(3 \cdot(3 \cdot(3 \cdot(3 \cdot(3 \cdot(3 \cdot(3 \cdot(3 \cdot(3 \cdot(3+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1
$$

3. What is the smallest possible degree of a polynomial that satisfies

$$
P(1)=P(2), P(3)=P(4), P(5)=P(6), \ldots, P(2013)=P(2014) ?
$$

4. (Putnam 2005) Find a nonzero polynomial $P(x, y)$ such that $P(\lfloor a\rfloor,\lfloor 2 a\rfloor)=0$ for all real numbers a.
