Trigonometric Functions (Varsity) Logarithmic Functions (JV)

Varsity Practice - Gunmay Handa
JV Practice - C.J. Argue

1 JV Warm-Up

The logarithm is an extremely useful function that is found all over math. For any positive b (except $b=1$) we can define the function $\log _{b}(x)$ to be the unique number c such that $b^{c}=x$. (We often write $\log _{b} x$ and leave out the parentheses). A few examples:

- $\log _{2} 8=3$ since $2^{3}=8$.
- $\log _{10} 1,000,000=6$ since $10^{6}=1,000,000$.
- $\log _{8} 4=\frac{2}{3}$ since $8^{2 / 3}=4$.
- $\log _{3} \frac{1}{9}=-2$ since $3^{-2}=\frac{1}{9}$.

You now know how to compute $\log _{b}(x)$ for many values of b and x. There are three important identities to know about logarithms:

1. $\log _{b}\left(x^{a}\right)=a \log _{b}(x)$.
2. $\log _{b}(x y)=\log _{b}(x)+\log _{b}(y)$.
3. $\log _{b}(x)=\frac{\log _{a}(x)}{\log _{a}(b)}$ for any nonnegative $a \neq 1$. This is called the "change of base" formula.

Important warning. If a problem involves a log that you can't compute by hand, say $\log _{2} 3$, then don't try to compute it! Try to find a way to make it cancel out.

1.1 Warm-up Problems

1. (NYCIML F07) Compute $\log _{2} 3^{2} \cdot \log _{3} 4^{3} \cdot \log _{4} 5^{4} \cdot \log _{5} 6^{5} \cdot \log _{6} 7^{7} \cdot \log _{7} 8^{7}$.
2. Derive identities (1) and (2) from the familiar facts of exponents: $\left(b^{a}\right)^{c}=b^{a c}$ and $b^{a+c}=b^{a} b^{c}$.
3. (NYCIML S06) You are given positive numbers r and s such that:

$$
\log _{4} r=\log _{6} s=\log _{9}(2 r+3 s) .
$$

Compute $\frac{r}{s}$.

2 JV Problems

1. Prove that $\log _{b} a=\frac{1}{\log _{a} b}$. This is a very useful identity for math competition problems. Use it in problems below!
2. Find a formula for $\log _{b^{n}} a$ in terms of n and $\log _{b} a$.
3. (AIME II 2013) Positive integers a and b satisfy

$$
\log _{2}\left(\log _{2^{a}}\left(\log _{2^{b}}\left(2^{1000}\right)\right)\right)=0
$$

Compute the sum of all possible values of $a+b$.
4. (NYCIML F11) If $\log _{4 n} 96=\log _{5 n} 75 \sqrt{5}$, compute n^{5}.
5. (NYCIML ??) Compute the minimum possible value of $\log _{y} x+\log _{x y} y$ where $y>x \geq 1$.
6. (AMC 12A 2015) Compute the value of a such that

$$
\frac{1}{\log _{2} a}+\frac{1}{\log _{3} a}+\frac{1}{\log _{4} a}=1
$$

7. (AIME II 2006) The lengths of the sides of a triangle with positive area are $\log _{10} 12, \log _{10} 75$, and $\log _{10} n$, where n is a positive integer. Find the number of possible values for n.
8. (Math Prize 2011) If $n>10$, compute the greatest possible value of

$$
\left.\log n^{\log (\log (\log n))}-\log (\log n)\right)^{\log (\log n)}
$$

All the logarithms are base 10.
9. (NYCIML 2003) Compute all ordered triples (x, y, z) satisfying:

$$
\begin{aligned}
\log _{2} x \log _{2} y+\log _{2}(x y) & =2 \\
\log _{2} y \log _{2} z+\log _{2}(y z) & =59 \\
\log _{2} z \log _{2} x+\log _{2}(z x) & =4
\end{aligned}
$$

3 JV Challenge Problems

Borrowed from Varsity practice. (Not about logarithms!)

1. (AIME II 2014) Suppose that the angles of $\triangle A B C$ satisfy $\cos (3 A)+\cos (3 B)+\cos (3 C)=1$. Two sides of the triangle have lengths 10 and 13 . There is a positive integer m so that the maximum possible length for the remaining side of $\triangle A B C$ is \sqrt{m}. Find m.
2. Let $x=\frac{180}{7}$ degrees. Find $\tan x \tan 2 x \tan 3 x$.

4 Varsity Warm-Up

Recall the basic trigonometric identities, namely

$$
\begin{align*}
& \sin (x+y)=\sin x \cos y+\cos x \sin y \tag{1}\\
& \cos (x+y)=\cos x \cos y-\sin x \sin y \tag{2}\\
& \sin ^{2} x+\cos ^{2} x=1 \tag{3}
\end{align*}
$$

and observe that we can recover most identities from these three via algebraic manipulation, using properties such as $\sin (-x)=-\sin x$ and $\frac{\sin x}{\cos x}=\tan x$. To solve trigonometric equations, it is often useful to apply these identities repeatedly (sometimes more cleverly than others) to reduce the equation into a solvable form.

The sine and cosine functions are also notable for their algebraic properties; namely, they are periodic with period 2π and are bounded in magnitude by 1 . What does this mean? It means that $\sin \theta=\sin (2 \pi+\theta)$ for all θ (verify this with (1)), and similarly for cosine. We also have that $|\sin \theta| \leq 1$ for all θ, with equality when θ is an odd integral multiple of $\frac{\pi}{2}$, and $|\cos \theta| \leq 1$ for all θ as well (when does equality hold)?

5 Varsity Warm-Up Problems

1. (AMC12B 2010) In $\triangle A B C, \cos (2 A-B)+\sin (A+B)=2$ and $A B=4$. What is $B C ?$
2. (AMC 12B 2014) What is the sum of all positive real solutions x to the equation

$$
2 \cos (2 x)\left(\cos (2 x)-\cos \left(\frac{2014 \pi^{2}}{x}\right)\right)=\cos (4 x)-1 ?
$$

3. (AIME II 2012) Let x and y be real numbers such that $\frac{\sin x}{\sin y}=3$ and $\frac{\cos x}{\cos y}=\frac{1}{2}$. What is the value of $\frac{\sin 2 x}{\sin 2 y}+\frac{\cos 2 x}{\cos 2 y}$?

6 Varsity Problems

1. (AMC 12A 2004) If $\sum_{n=0}^{\infty} \cos ^{2 n} \theta=5$, what is the value of $\cos 2 \theta$?
2. (AMC 12P 2002) Let $f_{n}(x)=\sin ^{n} x+\cos ^{n} x$. For how many x in $[0, \pi]$ is it true that $6 f_{4}(x)-4 f_{6}(x)=2 f_{2}(x) ?$
3. (AMC 12B 2002) Let a and b be real numbers such that $\sin a+\sin b=\frac{\sqrt{2}}{2}$ and $\cos a+\cos b=$ $\frac{\sqrt{6}}{2}$. Find $\sin (a+b)$.
4. Show that in a triangle $\triangle A B C, \tan A+\tan B+\tan C=\tan A \tan B \tan C$.
5. (AIME I 2008) Find the positive integer n such that

$$
\arctan \frac{1}{3}+\arctan \frac{1}{4}+\arctan \frac{1}{5}+\arctan \frac{1}{n}=\frac{\pi}{4}
$$

6. (AIME II 2014) Suppose that the angles of $\triangle A B C$ satisfy $\cos (3 A)+\cos (3 B)+\cos (3 C)=1$. Two sides of the triangle have lengths 10 and 13 . There is a positive integer m so that the maximum possible length for the remaining side of $\triangle A B C$ is \sqrt{m}. Find m.
7. (AMC12A 2009) The first two terms of a sequence are $a_{1}=1$ and $a_{2}=\frac{1}{\sqrt{3}}$. For $n \geq 1$,

$$
a_{n+2}=\frac{a_{n}+a_{n+1}}{1-a_{n} a_{n+1}}
$$

What is $\left|a_{2009}\right| ?$
8. Let $x=\frac{180}{7}$ degrees. Find $\tan x \tan 2 x \tan 3 x$.
9. (AIME I 2015) With all angles measured in degrees, the product $\prod_{k=1}^{45} \csc ^{2}(2 k-1)^{\circ}=m^{n}$, where m and n are integers greater than 1 . Find $m+n$.

7 Varsity Challenge Problems

1. (CMIMC 2018) Compute

$$
\sum_{k=0}^{2017} \frac{5+\cos \left(\frac{\pi k}{1009}\right)}{26+10 \cos \left(\frac{\pi k}{1009}\right)}
$$

2. (AIME 2000) Find the least positive integer n such that

$$
\frac{1}{\sin 45^{\circ} \sin 46^{\circ}}+\frac{1}{\sin 47^{\circ} \sin 48^{\circ}}+\cdots+\frac{1}{\sin 133^{\circ} \sin 134^{\circ}}=\frac{1}{\sin n^{\circ}}
$$

3. (AIME I 2013) For $\pi \leq \theta<2 \pi$, let

$$
P=\frac{1}{2} \cos \theta-\frac{1}{4} \sin 2 \theta-\frac{1}{8} \cos 3 \theta+\frac{1}{16} \sin 4 \theta+\frac{1}{32} \cos 5 \theta-\frac{1}{64} \sin 6 \theta-\frac{1}{128} \cos 7 \theta+\ldots
$$

and

$$
Q=1-\frac{1}{2} \sin \theta-\frac{1}{4} \cos 2 \theta+\frac{1}{8} \sin 3 \theta+\frac{1}{16} \cos 4 \theta-\frac{1}{32} \sin 5 \theta-\frac{1}{64} \cos 6 \theta+\frac{1}{128} \sin 7 \theta+\ldots
$$

so that $\frac{P}{Q}=\frac{2 \sqrt{2}}{7}$. Then $\sin \theta=-\frac{m}{n}$ where m and n are relatively prime positive integers. Find $m+n$.
4. (HMMT 2014) Compute

$$
\sum_{k=1}^{1007}\left(\cos \left(\frac{\pi k}{1007}\right)\right)^{2014}
$$

