2 Switching the order of summation

1. Prove useful identity (9).

$$
\sum_{k=1}^{\infty} k x^{k}=\sum_{k=1}^{\infty} \sum_{j=1}^{k} x^{k}=\sum_{j=1}^{\infty} \sum_{k=j}^{\infty} x^{k}=\sum_{j=1}^{\infty} \frac{x^{j}}{1-x}=\frac{1}{1-x} \sum_{j=1}^{\infty} x^{j}=\frac{1}{1-x} \cdot \frac{x}{1-x} .
$$

2. Riemann's zeta function $\zeta(k)$ is defined to be the infinite sum

$$
\zeta(k)=1+\frac{1}{2^{k}}+\frac{1}{3^{k}}+\cdots=\sum_{j=1}^{\infty} \frac{1}{j^{k}} .
$$

Find $\sum_{k=2}^{\infty}(\zeta(k)-1)$.

$$
\sum_{k=2}^{\infty}(\zeta(k)-1)=\sum_{k=2}^{\infty} \sum_{j=2}^{\infty} \frac{1}{j^{k}}=\sum_{j=2}^{\infty} \sum_{k=2}^{\infty} \frac{1}{j^{k}}=\sum_{j=2}^{\infty} \frac{1 / j^{2}}{1-1 / j}=\sum_{j=2}^{\infty}\left(\frac{1}{j-1}-\frac{1}{j}\right)=1 .
$$

3. We define the $n^{\text {th }}$ harmonic number H_{n} to be the value of the sum $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$, which has no closed form.
Express $\sum_{k=1}^{n} H_{k}$ in terms of H_{n}.
$\sum_{k=1}^{n} H_{k}=\sum_{k=1}^{n} \sum_{j=1}^{k} \frac{1}{j}=\sum_{j=1}^{n} \sum_{k=j}^{n} \frac{1}{j}=\sum_{j=1}^{n} \frac{n-j+1}{j}=(n+1) \sum_{j=1}^{n} \frac{1}{j}-\sum_{j=1}^{n} 1=(n+1) H_{n}-n$.
4. (Concrete Mathematics) Find (again, in terms of H_{n}) $\sum_{k=1}^{n} \frac{H_{k}}{(k+1)(k+2)}$.

$$
\sum_{k=1}^{n} \frac{H_{k}}{(k+1)(k+2)}=\sum_{k=1}^{n} \frac{\sum_{j=1}^{k} \frac{1}{j}}{(k+1)(k+2)}=\sum_{j=1}^{n} \frac{1}{j} \sum_{k=j}^{n} \frac{1}{(k+1)(k+2)} .
$$

Applying problem \#1 from the next section, we get

$$
\sum_{j=1}^{n} \frac{1}{j} \sum_{k=j}^{n}\left(\frac{1}{k+1}-\frac{1}{k+2}\right)=\sum_{j=1}^{n} \frac{1}{j}\left(\frac{1}{j+1}-\frac{1}{n+2}\right)=\sum_{j=1}^{n} \frac{1}{j(j+1)}-\frac{1}{n+2} \sum_{j=1}^{n} \frac{1}{j} .
$$

Applying problem $\# 1$ from the next section yet again, the first sum in this result becomes $1-\frac{1}{n+1}$, so the whole thing simplifies to $1-\frac{1}{n+1}-\frac{H_{n}}{n+2}$.
5. Prove useful identity (6) by writing k^{2} as $\sum_{j=1}^{k} k$. (Hint: some things will go wrong, but you can still save the day.)

Let $\square_{n}=\sum_{k=1}^{n} k^{2}$. We have

$$
\square_{n}=\sum_{k=1}^{n} \sum_{j=1}^{k} k=\sum_{j=1}^{n} \sum_{k=j}^{n} k=\sum_{j=1}^{n} \frac{(n+j)(n-j+1)}{2}=\sum_{j=1}^{n} \frac{n^{2}+n}{2}+\sum_{j=1}^{n} \frac{j}{2}-\sum_{j=1}^{n} \frac{j^{2}}{2}
$$

Unfortunately, we don't know how to evaluate the very last sum here yet, but we do know how to evaluate the other two, and so we get

$$
\square_{n}=\frac{n^{3}+n^{2}}{2}+\frac{n^{2}+n}{4}-\frac{\square_{n}}{2}
$$

Solving for \square_{n}, we get the formula $\square_{n}=\frac{n(n+1)(2 n+1)}{6}$.
6. Find $\sum_{k=1}^{n} k \cdot F_{k}$, where F_{n} is the $n^{\text {th }}$ Fibonacci number: $F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$. (Hint: solve problem \#2 in the next section first.)

$$
\sum_{k=1}^{n} k \cdot F_{k}=\sum_{k=1}^{n} \sum_{j=1}^{k} F_{k}=\sum_{j=1}^{n} \sum_{k=j}^{n} F_{k}=\sum_{j=1}^{n}\left(F_{n+2}-F_{j+1}\right)=n F_{n+2}-\left(F_{n+3}-F_{3}\right)
$$

7. (ARML 1978) Find the sum of the infinite series $\sum_{k=1}^{\infty} \frac{k^{2}}{3^{k}}$.

$$
\sum_{k=1}^{\infty} \frac{k^{2}}{3^{k}}=\sum_{k=1}^{\infty} \sum_{j=1}^{k} \frac{k}{3^{k}}=\sum_{j=1}^{\infty} \sum_{k=j}^{\infty} \frac{k}{3^{k}}
$$

Let $\ell=k-j+1$, so that we can relabel the inside sum as

$$
\sum_{j=1}^{\infty} \sum_{\ell=1}^{\infty} \frac{\ell+j-1}{3^{\ell+j-1}}=\sum_{j=1}^{\infty}\left(\frac{1}{3^{j-1}} \sum_{\ell=1}^{\infty} \frac{\ell}{3^{\ell}}+\frac{j-1}{3^{j-1}} \sum_{\ell=1}^{\infty} \frac{1}{3^{\ell}}\right)=\sum_{j=1}^{\infty}\left(\frac{1}{3^{j-1}} \cdot \frac{3}{4}+\frac{j-1}{3^{j-1}} \cdot \frac{1}{2}\right)
$$

This we can rewrite as

$$
\frac{3}{4} \sum_{j=1}^{\infty} \frac{1}{3^{j-1}}+\frac{1}{2} \sum_{j=1}^{\infty} \frac{j-1}{3^{j-1}}=\frac{3}{4} \cdot \frac{3}{2}+\frac{1}{2} \cdot \frac{3}{4}=\frac{3}{2}
$$

8. (Putnam 2003) Show that for each positive integer n,

$$
n!=\prod_{j=1}^{n} \operatorname{lcm}\{1,2, \ldots,\lfloor n / j\rfloor\} .
$$

We show that both sides are equal by showing that for any prime p, p divides both sides an equal number of times.
Recall that the number of times p divides n ! is $\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor+\cdots$. We can rewrite this as

$$
\sum_{k=1}^{\infty}\left\lfloor\frac{n}{p^{k}}\right\rfloor=\sum_{k=1}^{\infty} \sum_{j: j<n / p^{k}} 1,
$$

and then reverse the summation to get

$$
\sum_{j=1}^{\infty} \sum_{k: p^{k}<n / j} 1=\sum_{j=1}^{\infty} \max \left\{k: p^{k}<n / j\right\} .
$$

But $\max \left\{k: p^{k}<n / j\right\}$ is precisely the number of times p divides $\operatorname{lcm}\{1,2, \ldots,\lfloor n / j\rfloor\}$, so the sum we've ended up with is the number of times p divides the product on the left-hand side of the original equation. Therefore we're done.

3 The method of differences

1. Find the sum $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\cdots+\frac{1}{98 \cdot 99}+\frac{1}{99 \cdot 100}$.

We can write $\frac{1}{k(k+1)}$ as $\frac{1}{k}-\frac{1}{k+1}$, which means that this sum simplifies to

$$
\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{99}-\frac{1}{100}\right)=1-\frac{1}{100}=\frac{99}{100} .
$$

2. Find $\sum_{k=1}^{n} F_{k}$, where F_{n} is the $n^{\text {th }}$ Fibonacci number: $F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$.

We can write F_{k} as $F_{k+2}-F_{k+1}$, so this sum simplifies to

$$
\left(F_{3}-F_{2}\right)+\left(F_{4}-F_{3}\right)+\cdots+\left(F_{n+1}-F_{n}\right)+\left(F_{n+2}-F_{n+1}\right)=F_{n+2}-F_{2}=F_{n+2}-1 .
$$

3. (Wikipedia) A well-known (but hard) result is that $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$. Find an approximation for this sum by using the upper bound

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}} \leq 1+\sum_{k=2}^{\infty} \frac{1}{k^{2}-1 / 4}
$$

and evaluating the sum on the right-hand side. (Bonus: what approximation for π do you get in this way?)

We have $\frac{1}{k^{2}-1 / 4}=\frac{1}{(k-1 / 2)(k+1 / 2)}=\frac{1}{k-1 / 2}-\frac{1}{k+1 / 2}$. So this sum also telescopes to

$$
1+\left(\frac{1}{3 / 2}-\frac{1}{5 / 2}\right)+\left(\frac{1}{5 / 2}-\frac{1}{7 / 2}\right)+\left(\frac{1}{7 / 2}-\frac{1}{9 / 2}\right)+\cdots=1+\frac{1}{3 / 2}=\frac{5}{3}
$$

This is actually very close to the truth: $\frac{\pi^{2}}{6} \approx 1.645$ and $\frac{5}{3} \approx 1.667$. Relatedly, $\sqrt{10}$ is a pretty good approximation for π.
4. (ARML 1991) Let $\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right)\left(1-\frac{1}{5^{2}}\right) \cdots\left(1-\frac{1}{1991^{2}}\right)=\frac{x}{1991}$. Compute the integer x.

This is not a telescoping sum but a telescoping product. We can write $1-\frac{1}{k^{2}}$ as $\frac{k^{2}-1}{k^{2}}=$ $\frac{k-1}{k} \cdot \frac{k+1}{k}$, so the product simplifies to

$$
\left(\frac{2}{3} \cdot \frac{4}{3}\right) \cdot\left(\frac{3}{4} \cdot \frac{5}{4}\right) \cdots\left(\frac{1989}{1990} \cdot \frac{1991}{1990}\right) \cdot\left(\frac{1990}{1991} \cdot \frac{1992}{1991}\right)=\frac{2}{3} \cdot \frac{1992}{1991}=\frac{1328}{1991}
$$

and $x=1328$.
5. (a) Prove useful identity (8).

Pascal's identity states that $\binom{k}{r}+\binom{k}{r+1}=\binom{k+1}{r+1}$, or $\binom{k}{r}=\binom{k+1}{r+1}-\binom{k}{r+1}$. So we have

$$
\sum_{k=1}^{n}\binom{k}{r}=\sum_{k=1}^{n}\left(\binom{k+1}{r+1}-\binom{k}{r+1}\right)=\binom{n+1}{r+1}-\binom{1}{r+1}=\binom{n+1}{r+1}
$$

(b) We have $k^{2}=2\binom{k}{2}+\binom{k}{1}$. Use this, and useful identity (8), to derive useful identity (6).

We have

$$
\sum_{k=1}^{n} k^{2}=2 \sum_{k=1}^{n}\binom{k}{2}+\sum_{k=1}^{n}\binom{k}{1}=2\binom{n+1}{3}+\binom{n+1}{2}
$$

which simplifies to $\frac{n(n+1)(2 n+1)}{6}$.
(c) Find a similar expression for k^{3}, and use it with useful identity (8) to derive useful identity (7). (Note: this method applies more generally to find the sum of any polynomial expression in k.

The expression is $k^{3}=6\binom{k}{3}+6\binom{k}{2}+\binom{k}{1}$, which can be found by repeatedly choosing the right binomial coefficient to subtract that will reduce the degree of the polynomial by 1. From here,

$$
\sum_{k=1}^{n} k^{3}=6 \sum_{k=1}^{n}\binom{k}{3}+6 \sum_{k=1}^{n}\binom{k}{2}+\sum_{k=1}^{n}\binom{k}{1}=6\binom{n+1}{4}+6\binom{n+1}{3}+\binom{n+1}{2}
$$

6. (a) Write the differences $\sin (n+1)-\sin n$ and $\cos (n+1)-\cos n$ in terms of $\sin n, \cos n$, and constants.

We have:

$$
\left\{\begin{aligned}
\sin (n+1)-\sin n & =\sin n \cos 1+\cos n \sin 1-\sin n \\
& =(-1+\cos 1) \sin n+\sin 1 \cos n \\
\cos (n+1)-\cos n & =\cos n \cos 1-\sin n \sin 1-\cos n \\
& =(-\sin 1) \sin n+(-1+\cos 1) \cos n
\end{aligned}\right.
$$

(b) Find a function $f(n)$ such that $f(n+1)-f(n)=\sin n$.

Begin by taking $f(n)=\frac{\sin n}{\sin 1}+\frac{\cos n}{1-\cos 1}$. By the above identities, we'll get

$$
f(n+1)-f(n)=\left(\frac{-1+\cos 1}{\sin 1} \sin n+\cos n\right)+\left(\frac{-\sin 1}{1-\cos 1} \sin n-\cos n\right)
$$

which simplifies to

$$
f(n+1)-f(n)=\left(\frac{-1+\cos 1}{\sin 1}+\frac{-\sin 1}{1-\cos 1}\right) \sin n=-\frac{2}{\sin 1} \sin n .
$$

So we can adjust our $f(n)$ by multiplying it by $-\frac{\sin 1}{2}$, getting the new function

$$
f(n)=-\frac{1}{2} \sin n-\frac{\sin 1}{2-2 \cos 1} \cos n
$$

In fact, $f(n)$ further simplifies to $-\frac{\cos \left(n-\frac{1}{2}\right)}{2 \sin 1 / 2}$, though we don't need that.
(c) Find a formula for $\sum_{k=1}^{n} \sin k$.

Since $\sin k=f(k+1)-f(k)$, this sum telescopes to $f(n+1)-f(1)$, which simplifies to $\frac{\sin \frac{n}{2} \sin \frac{n+1}{2}}{\sin \frac{1}{2}}$.
7. (VTRMC 2014) Find $\sum_{k=2}^{\infty} \frac{k^{2}-2 k-4}{k^{4}+4 k^{2}+16}$.

Note that $k^{4}+4 k^{2}+16=\left(k^{4}+8 k^{2}+16\right)-4 k^{2}=\left(k^{2}+4\right)^{2}-(2 k)^{2}=\left(k^{2}+2 k+4\right) \cdot\left(k^{2}-2 k+4\right)$. Furthermore, the summand can be split into the partial fractions

$$
\frac{k^{2}-2 k-4}{k^{4}+4 k^{2}+16}=\frac{k-2}{2\left(k^{2}-2 k+4\right)}-\frac{k}{2\left(k^{2}+2 k+4\right)}=Q(k)-Q(k+2),
$$

where $Q(x)=\frac{x-2}{2\left(x^{2}-2 x+4\right)}$. So the sum telescopes as

$$
(Q(2)-Q(4))+(Q(3)-Q(5))+(Q(4)-Q(6))+\cdots=Q(2)+Q(3),
$$

since as $x \rightarrow \infty, Q(x) \rightarrow 0$. To find the value of the sum, all we have to do is evaluate $Q(2)+Q(3)=0+\frac{1}{2(9-6+4)}=\frac{1}{14}$.
8. (USAMO 1991) For any set S, let $\sigma(S)$ and $\pi(S)$ denote the sum and product, respectively, of the elements of S, with $\sigma(\emptyset)=0$ and $\pi(\emptyset)=1$. Prove that

$$
\sum_{S \subseteq[n]} \frac{\sigma(S)}{\pi(S)}=\left(n^{2}+2 n\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)(n+1)
$$

where the sum ranges over all subsets S of $[n]=\{1,2,3, \ldots, n\}$.
We can split the sum into two parts: sets S not including n, and sets S including n. The first part is subsets of $[n-1]$, and sets in the second part can be written as $T \cup\{n\}$, where T is a subset of $[n-1]$. So we have

$$
\sum_{S \subseteq[n]} \frac{\sigma(S)}{\pi(S)}=\sum_{S \subseteq[n-1]} \frac{\sigma(S)}{\pi(S)}+\sum_{T \subseteq[n-1]} \frac{\sigma(T \cup\{n\})}{\pi(T \cup\{n\})}=\sum_{S \subseteq[n-1]} \frac{\sigma(S)}{\pi(S)}+\sum_{T \subseteq[n-1]} \frac{\sigma(T)+n}{\pi(T) \cdot n}
$$

We can simplify the second sum and rearrange to get

$$
\sum_{S \subseteq[n]} \frac{\sigma(S)}{\pi(S)}=\left(1+\frac{1}{n}\right) \sum_{S \subseteq[n-1]} \frac{\sigma(S)}{\pi(S)}+\sum_{T \subseteq[n-1]} \frac{1}{\pi(T)}
$$

The last summation can be solved directly: it is the product $(1+1)\left(1+\frac{1}{2}\right) \cdots\left(1+\frac{1}{n-1}\right)$, since when we expand this product, each term $\frac{1}{\pi(T)}$ appears exactly once. This product telescopes to exactly n, so we get the recurrence

$$
s_{n}=\left(1+\frac{1}{n}\right) \cdot s_{n-1}+n
$$

where s_{n} is the sum we are trying to evaluate. From here, the statement we want can be shown by induction.
9. (a) Find $\sum_{k=1}^{\infty} \frac{2^{k}}{2^{2^{k}}+1}$.

We have

$$
\frac{x}{2^{x}-1}-\frac{2 x}{2^{2 x}-1}=\frac{x}{2^{x}-1}\left(1-\frac{2}{2^{x}+1}\right)=\frac{x}{2^{x}-1} \cdot \frac{2^{x}-1}{2^{x}+1}=\frac{x}{2^{x}+1}
$$

and in particular $\frac{2^{k}}{2^{2^{k}+1}}=\frac{2^{k}}{2^{2^{k}}-1}-\frac{2^{k+1}}{2^{2^{k+1}-1}}$. So this sum telescopes as

$$
\left(\frac{2^{1}}{2^{2^{1}}-1}-\frac{2^{2}}{2^{2^{2}}-1}\right)+\left(\frac{2^{2}}{2^{2^{2}}-1}-\frac{2^{3}}{2^{2^{3}}-1}\right)+\left(\frac{2^{3}}{2^{2^{3}}-1}-\frac{2^{4}}{2^{2^{4}}-1}\right)+\cdots
$$

and in the end, only the first term $\frac{2^{1}}{2^{2^{1}}-1}=\frac{2}{3}$ remains.
(b) Show that $\sum_{\text {all } k \geq 1} \frac{k}{2^{k}+1}=\sum_{\text {odd } k \geq 1} \frac{k}{2^{k}-1}$.

By similar logic, we have

$$
\sum_{k=1}^{\infty} \frac{j \cdot 2^{k}}{2^{j} 2^{k}+1}=\frac{j}{2^{j}-1}
$$

So each term in the right-hand sum corresponds to infinitely many terms of the lefthand sum: term 1 is the sum of terms $1,2,4,8, \ldots$ on the left-hand side, while term 3 is the sum of terms $3,6,12,24, \ldots$ on the left-hand side, term 5 is the sum of terms $5,10,20,40, \ldots$ on the left-hand side, and so on.

Since each positive integer can be uniquely factored as an odd number times a power of 2 , this means that each term of the left-hand sum is covered exactly once in this way, and the two sums are equal.

