Algebra Review 2

Tudor Dimitre-Popescu

1 JV Warm-Up

1. Find the unique real number α such that $x^{3}-4 x^{2}+\alpha x+18=0$ has eactly two solutions in the real numbers.

Solution. The real solution must be a double root, so the solutions must be r, r, s, with $r, s \in \mathbb{R}$. By Vieta we have that: $2 r+s=4,2 r s+r^{2}=\alpha, r^{2} s=-18$. Substitute s to get that $r^{3}-2 r^{2}-9=0$.
2. Find the sum of all roots of $x^{2001}+\left(\frac{1}{2}-x\right)^{2001}=0$.

Solution. By Vieta, we want $s_{1}=-\frac{a_{n-1}}{a_{n}}$. Apply binomial theorem to get $s_{1}=500$.
3. Let x_{1}, x_{2}, x_{3} be the roots of $x^{3}-3 x-1=0$. Compute $\frac{1}{x_{1}-2}+\frac{1}{x_{2}-2}+\frac{1}{x_{3}-2}$.

Solution. Expanding, the desired sum is just $\frac{12-4\left(x_{1}+x_{2}+x_{3}\right)+\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)}{8-4\left(x_{1}+x_{2}+x_{3}\right)+2\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)-x_{1} x_{2} x_{3}}=9$, by Vieta.

2 Problems

1. (AIME 2009) Call a 3 -digit number geometric if it has 3 distinct digits which, when read from left to right, form a geometric sequence. Find the difference between the largest and smallest geometric numbers.
2. (AIME 2014) Let $x_{1}<x_{2}<x_{3}$ be three real roots of equation $\sqrt{2014} x^{3}-4029 x^{2}+2=0$. Find $x_{2}\left(x_{1}+x_{3}\right)$.
3. (AMC12 2008 A) The numbers $\log \left(a^{3} b^{7}\right), \log \left(a^{5} b^{12}\right)$, and $\log \left(a^{8} b^{15}\right)$ are the first three terms of an arithmetic sequence, and the $12^{\text {th }}$ term of the sequence is $\log b^{n}$. What is n ?
4. (AIME 2018) For each ordered pair of real numbers (x, y) satisfying

$$
\log _{2}(2 x+y)=\log _{4}\left(x^{2}+x y+7 y^{2}\right)
$$

there is a real number K such that

$$
\log _{3}(3 x+y)=\log _{9}\left(3 x^{2}+4 x y+K y^{2}\right)
$$

Find the product of all possible values of K.
5. (AIME 2016) For $-1<r<1$, let $S(r)$ denote the sum of the geometric series

$$
12+12 r+12 r^{2}+12 r^{3}+\ldots
$$

Let a between -1 and 1 satisfy $S(a) S(-a)=2016$. Find $S(a)+S(-a)$.
6. (AIME 2016) The sequences of positive integers $1, a_{2}, a_{3}, \ldots$ and $1, b_{2}, b_{3}, \ldots$ are an increasing arithmetic sequence and an increasing geometric sequence, respectively. Let $c_{n}=a_{n}+b_{n}$. There is an integer k such that $c_{k-1}=100$ and $c_{k+1}=1000$. Find c_{k}.
7. (AIME 2015) Let $P(x)=2 x^{3}-2 a x^{2}+\left(a^{2}-81\right) x-c$. For a given a, P has exactly two values for c for which the roots are all positive integers. Find the sum of all possible value of c.

3 Varsity Warm-Up

1. Find the unique real number α such that $x^{3}-4 x^{2}+\alpha x+18=0$ has eactly two solutions in the real numbers.

Solution. The real solution must be a double root, so the solutions must be r, r, s, with $r, s \in \mathbb{R}$. By Vieta we have that: $2 r+s=4,2 r s+r^{2}=\alpha, r^{2} s=-18$. Substitute s to get that $r^{3}-2 r^{2}-9=0$.
2. Find the sum of all roots of $x^{2001}+\left(\frac{1}{2}-x\right)^{2001}=0$

Solution. By Vieta, we want $s_{1}=-\frac{a_{n-1}}{a_{n}}$. Apply binomial theorem to get $s_{1}=500$.
3. Let x_{1}, x_{2}, x_{3} be the roots of $x^{3}-3 x-1=0$. Compute $\frac{1}{x_{1}-2}+\frac{1}{x_{2}-2}+\frac{1}{x_{3}-2}$.

Solution. Expanding, the desired sum is just $\frac{12-4\left(x_{1}+x_{2}+x_{3}\right)+\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)}{8-4\left(x_{1}+x_{2}+x_{3}\right)+2\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)-x_{1} x_{2} x_{3}}=9$, by Vieta.

4 Problems

1. (AMC 2008 A) A sequence $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right), \ldots$ of points in the coordinate plane satisfies

$$
\left(a_{n+1}, b_{n+1}\right)=\left(\sqrt{3} a_{n}-b_{n}, \sqrt{3} b_{n}+a_{n}\right) \quad \text { for } \quad n=1,2,3, \ldots
$$

Suppose that $\left(a_{100}, b_{100}\right)=(2,4)$. What is $a_{1}+b_{1}$?
2. If $x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$, prove that $\frac{x^{6}+y^{6}+z^{6}}{x^{3}+y^{3}+z^{3}}=x y z$. Solution. Outline: Multiply $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$ by $x y z$ to get that $x y+x z+y z=0$, so x, y, z are the solutions of $t^{3}-k=0$, for some constant k. Then $x^{3}=y^{3}=z^{3}=k$, and by Vieta we are done.
3. (HMMT 2009) If $\tan x+\tan y=4$ and $\cot x+\cot y=5$, compute $\tan (x+y)$.
4. (HMMT 2009) Let a, b, and c be the 3 roots of $x^{3}-x+1=0$. Find $\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}$.
5. (AMC 2006) Let a_{1}, a_{2}, \ldots be a sequence for which

$$
a_{1}=2 \quad a_{2}=3 \quad \text { and } \quad a_{n}=\frac{a_{n-1}}{a_{n-2}} \text { for each positive integer } n \geq 3
$$

What is a_{2006} ?
6. (Putnam 2016)* Let $x_{0}, x_{1}, x_{2}, \ldots$ be the sequence such that $x_{0}=1$ and for $n \geq 0$,

$$
x_{n+1}=\ln \left(e^{x_{n}}-x_{n}\right)
$$

(as usual, the function \ln is the natural logarithm). Show that the infinite series

$$
x_{0}+x_{1}+x_{2}+\cdots
$$

converges and find its sum.

