Solving Recurrences

Western PA ARML Practice

0 Useful Facts

Solving linear recurrences. To the recurrence $x_{n}=A x_{n-1}+B x_{n-2}$ is associated the characteristic equation $x^{2}=A x+B$. If this equation has two ${ }^{1}$ distinct ${ }^{2}$ roots r_{1}, r_{2}, then $x_{n}=r_{1}^{n}$ and $x_{n}=r_{2}^{n}$ are solutions to the recurrence, and all other solutions have the form $x_{n}=C_{1} r_{1}^{n}+C_{2} r_{2}^{n}$.
Fixed points. If the recurrence $x_{n}=f\left(x_{n-1}\right)$ (where f is an arbitrary function) eventually converges, approaching a fixed limit x, then that limit must satisfy $x=f(x)$.

Monotonicity. If a sequence $\left(x_{n}\right)$ satisfies $x_{n}<x_{n+1}$ and $x_{n}<M$ for all n (if it keeps growing, but never passes some fixed upper bound) then it converges.

1 Exercises

1. Solve the recurrence $a_{n}=3 a_{n-1}+1$ with $a_{0}=0$.
2. Solve the recurrence $b_{n}=3 b_{n-1}+n$ with $b_{0}=0$.
3. Solve the recurrence $c_{n}=3 c_{n-1}+2^{n}$ with $c_{0}=0$.
4. Solve the recurrence $d_{n}=d_{n-1}+d_{n-2}+1$ with $d_{0}=1$ and $d_{1}=2$.
5. Solve the recurrence $e_{n}=e_{n-1}+2 e_{n-2}$ with $e_{0}=0$ and $e_{1}=1$.

2 Problems

6. Compute

$$
2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}}}}
$$

[^0]7. Compute
$$
\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}}}
$$
8. Compute
$$
\left(-2+\left(-2+\left(-2+\left(-2+\left(-2+(-2+\cdots)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2} .
$$
9. The Fibonacci numbers are defined by the recurrence $F_{n}=F_{n-1}+F_{n-2}$, with $F_{0}=0$ and $F_{1}=1$. Find a recurrence for the squared Fibonacci numbers F_{n}^{2}.
10. (a) Compute $\left(\frac{1+\sqrt{13}}{2}\right)^{10}+\left(\frac{1-\sqrt{13}}{2}\right)^{10}$.
(b) Compute the remainder $\left(\frac{1+\sqrt{13}}{2}\right)^{1000}+\left(\frac{1-\sqrt{13}}{2}\right)^{1000} \bmod 18$.
11. (Concrete Math) Solve the recurrence $2 T_{n}=n T_{n-1}+3 \cdot n$!, with $T_{0}=5$.
12. (PUMaC 2007) Two sequences x_{n} and y_{n} are defined by $x_{0}=y_{0}=7$ and
\[

\left\{$$
\begin{array}{l}
x_{n}=4 x_{n-1}+3 y_{n-1} \\
y_{n}=3 y_{n-1}+2 x_{n-1}
\end{array}
$$\right.
\]

Find the limiting value of $\frac{x_{n}}{y_{n}}$ as $n \rightarrow \infty$.
13. The Lucas-Lehmer test for whether a Mersenne number $2^{p}-1$ is prime is to compute the remainder $s_{p-2} \bmod 2^{p}-1$, where s_{i} is a sequence recursively defined by $s_{i}=s_{i-1}^{2}-2$, with $s_{0}=4$.
(Specifically, $2^{p}-1$ is prime if and only if p is prime and $s_{p-2} \equiv 0\left(\bmod 2^{p}-1\right)$.)
Find a closed-form solution for s_{n}.
14. (Putnam 1985, modified) Solve the recurrence $a_{j+1}=a_{j}^{2}+2 a_{j}$ with $a_{0}=1$.
15. (VTRMC 1990) The number of individuals in a certain population (in arbitrary real units) obeys, at discrete time intervals, the equation $y_{n+1}=y_{n}\left(2-y_{n}\right)$ for $n=0,1,2, \ldots$, where y_{0} is the initial population.
(a) Find all "steady-state" solutions y^{*} such that, if $y_{0}=y^{*}$, then $y_{n}=y^{*}$ for $n=1,2, \ldots$
(b) Prove that if $0<y_{0}<1$, then the sequence $\left(y_{n}\right)$ converges monotonically to one of the steady-state solutions found in (a).
16. (Putnam 2016) Let $x_{0}, x_{1}, x_{2}, \ldots$ be the sequence such that $x_{0}=1$ and for $n \geq 0, x_{n+1}=$ $\ln \left(e^{x_{n}}-x_{n}\right)$. Show that the infinite series $x_{0}+x_{1}+x_{2}+\cdots$ converges and find its sum.

[^0]: ${ }^{1}$ We can use the same method to solve equations that go back more than two terms, but then the characteristic equation is cubic or worse.
 ${ }^{2}$ If the equation instead has a double root r, then $x_{n}=r^{n}$ and $x_{n}=n \cdot r^{n}$ are solutions, and all other solutions have the form $x_{n}=\left(C_{1}+C_{2} n\right) \cdot r^{n}$.

