Complex Numbers

JV Practice 9/29/19 Jenny Yu

1 Warmup

- 1. Definition: $i = \sqrt{-1}$ and $i^2 = -1$
- 2. Definition: The standard form of a complex number is a + bi.
- 3. Definition: The complex conjugate of a complex number z = a + bi is $\overline{z} = a bi$.
- 4. **DeMoivre's Theorem:** $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$ for all integers n.
- 5. Write each of the following expressions in standard form:
 - (-4+7i)+(5-10i)
 - (1-5i)(-9+2i)
 - $\frac{3-i}{2+7i}$
- 6. Find all the roots of $2x^3 + 2x^2 + x 5 = 0$.
- 7. Find c if a, b, and c are positive integers which satisfy $c = (a + bi)^3 107i$
- 8. Given that z is a complex number such that $z + \frac{1}{z} = 2\cos 3^{\circ}$, find the least integer that is greater than $z^{2000} + \frac{1}{z^{2000}}$.

2 Problems

- 1. Compute $|1+2i|^2$ and $(1+2i)^2$. Do the same for $|2+3i|^2$, $(2+3i)^2$. Do you notice anything special about the numbers you find?
- 2. If $\frac{(x+yi)}{i} = (7+9i)$, where x and y are real, what is the value of (x+yi)(x-yi)?
- 3. Determine all complex number z that satisfy the equation z + 3z' = 5 6i, where z' is the complex conjugate of z.
- 4. Find all complex numbers z such that (4+2i)z + (8-2i)z' = -2+10i, where z' is the complex conjugate of z.
- 5. Given that the complex number z = -2+7i is a root to the equation: $z^3+6z^2+61z+106 = 0$, find the real root to the equation.
- 6. Prove that $\cos(3\theta) = \cos^3(\theta) 3\cos(\theta)\sin^2(\theta)$ for all θ .
- 7. Find the number of ordered pairs of real numbers (a, b) such that $(a + bi)^{2002} = a bi$.

- 8. Write the complex number 1-i in polar form. Then use DeMoivre's Theorem to write $(1-i)^{10}$ in the complex form a + bi, where a and b are real numbers and do not involve the use of a trigonometric function.
- 9. Find all of the solutions to the equation $x^3 1 = 0$.
- 10. (AMC 2017) There are 24 different complex numbers z such that $z^{24} = 1$. For how many of these is z^6 a real number?
- 11. (AIME 2009) There is a complex number z with imaginary part 164 and a positive integer n such that

$$\frac{z}{z+n} = 4i.$$

Find n.