Complex Numbers

JV Practice 9/29/19

Jenny Yu

1 Warmup

1. Definition: $i=\sqrt{-1}$ and $i^{2}=-1$
2. Definition: The standard form of a complex number is $a+b i$.
3. Definition: The complex conjugate of a complex number $z=a+b i$ is $\bar{z}=a-b i$.
4. DeMoivre's Theorem: $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$ for all integers n.
5. Write each of the following expressions in standard form:

- $(-4+7 i)+(5-10 i)$
- $(1-5 i)(-9+2 i)$
- $\frac{3-i}{2+7 i}$

6. Find all the roots of $2 x^{3}+2 x^{2}+x-5=0$.
7. Find c if a, b, and c are positive integers which satisfy $c=(a+b i)^{3}-107 i$
8. Given that z is a complex number such that $z+\frac{1}{z}=2 \cos 3^{\circ}$, find the least integer that is greater than $z^{2000}+\frac{1}{z^{2000}}$.

2 Problems

1. Compute $|1+2 i|^{2}$ and $(1+2 i)^{2}$. Do the same for $|2+3 i|^{2},(2+3 i)^{2}$. Do you notice anything special about the numbers you find?
2. If $\frac{(x+y i)}{i}=(7+9 i)$, where x and y are real, what is the value of $(x+y i)(x-y i)$?
3. Determine all complex number z that satisfy the equation $z+3 z^{\prime}=5-6 i$, where z^{\prime} is the complex conjugate of z.
4. Find all complex numbers z such that $(4+2 i) z+(8-2 i) z^{\prime}=-2+10 i$, where z^{\prime} is the complex conjugate of z.
5. Given that the complex number $z=-2+7 i$ is a root to the equation: $z^{3}+6 z^{2}+61 z+106=0$, find the real root to the equation.
6. Prove that $\cos (3 \theta)=\cos ^{3}(\theta)-3 \cos (\theta) \sin ^{2}(\theta)$ for all θ.
7. Find the number of ordered pairs of real numbers (a, b) such that $(a+b i)^{2002}=a-b i$.
8. Write the complex number $1-i$ in polar form. Then use DeMoivre's Theorem to write $(1-i)^{10}$ in the complex form $a+b i$, where a and b are real numbers and do not involve the use of a trigonometric function.
9. Find all of the solutions to the equation $x^{3}-1=0$.
10. (AMC 2017) There are 24 different complex numbers z such that $z^{24}=1$. For how many of these is z^{6} a real number?
11. (AIME 2009) There is a complex number z with imaginary part 164 and a positive integer n such that

$$
\frac{z}{z+n}=4 i .
$$

Find n.

