Roots of Unity

Varsity Practice 9/29/19
 Matthew Shi

1 Warmup

1. DeMoivre's Theorem: $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$ for all integers n.
2. Euler's Formula: $e^{i \theta}=\cos (\theta)+i \sin (\theta)$. This lends itself to $e^{i \pi}=-1$.
3. Roots of Unity: Define $\zeta_{k, n}=e^{i 2 \pi \frac{k}{n}}$. Note that $\zeta_{k, n}^{n}=1$ for all integer k.
4. Compute $\sum_{k=1}^{50} \sin (k \pi / 25)$.
5. Suppose a satisfies $x^{15}-1=0$ and b satisfies $x^{20}-1=0$. Find the smallest $n>0$ such that $(a b)^{n}-1=0$ must be true.
6. Show that $\sum_{k=0}^{n} \zeta_{k, n}=0$. In addition, show that $\sum_{k=0}^{n} \zeta_{k, n}^{j}=0$ for j not a multiple of n, and n otherwise.

2 Problems

1. (CHMMC 2017 Team) Let $a=e^{4 \pi i / 5}$ be a nonreal fifth root of unity and $b=e^{2 \pi i / 17}$ be a nonreal seventeenth root of unity. Compute the value of the product

$$
(a+b)\left(a+b^{16}\right)\left(a^{2}+b^{2}\right)\left(a^{2}+b^{15}\right)\left(a^{3}+b^{8}\right)\left(a^{3}+b^{9}\right)\left(a^{4}+b^{4}\right)\left(a^{4}+b^{13}\right)
$$

2. (BMT 2015 Ana) Let ω be a primitive 7 th root of unity. Find $\prod_{k=0}^{6}\left(1+\omega^{k}-\omega^{2 k}\right)$.
3. (HMMT 2008 Alg) Determine the number of roots of unity that are also roots of $z^{2}+a z+b=0$ for some integers a, b.
4. (HMMT 2018 Alg) Let α, β, γ be three real numbers. Suppose that

$$
\begin{aligned}
\cos \alpha+\cos \beta+\cos \gamma & =1 \\
\sin \alpha+\sin \beta+\sin \gamma & =1
\end{aligned}
$$

Find the smallest possible value of $\cos \alpha$
5. (HMMT 2017 Guts) Let a and b be complex numbers satisfying the two equations

$$
\begin{aligned}
& a^{3}-3 a b^{2}=36 \\
& b^{3}-3 b a^{2}=28 i
\end{aligned}
$$

Let M be the maximum possible magnitude of a. Find all a such that $|a|=M$.
6. (HMMT 2018 Guts) Michael picks a random subset of the complex numbers $\left\{1, \omega, \omega^{2}, \ldots, \omega^{2017}\right\}$ where ω is a primitive 2018th root of unity and all subsets are equally likely to be chosen. If the sum of the elements in his subset is S, what is the expected value of $|S|^{2}$? (The sum of the elements of the empty set is 0 .)
7. (BMT 2013 Ana) The minimal polynomial of a complex number r is the unique polynomial with rational coefficients of minimal degree with leading coefficient 1 that has r as a root. If f is the minimal polynomial of $\cos (\pi / 7)$, what is $\mathrm{f}(-1)$?
8. (HMMT 2014 Guts) Compute $\sum_{k=0}^{1007}\left(\cos \left(\frac{\pi k}{1007}\right)^{2014}\right.$
9. (BMT 2016 Individual) Find $\prod_{k=1}^{2017} e^{\pi i k / 2017} 2 \cos \left(\frac{\pi k}{2017}\right)$
10. (SMT 2013 Alg) Given z a complex number such that $z^{13}=1$, find all possible values of $z+z^{3}+z^{4}+z^{9}+z^{10}+z^{12}$.
11. (HMMT 2013 Alg) Let z be a non-real complex number such that $z^{23}=1$. Evaluate $\sum_{k=0}^{22} \frac{1}{1+z^{k}+z^{2 k}}$.
12. (HMIC 2014) Let ω be a root of unity and f be a polynomial with integer coefficients. Show that if $|f(\omega)|=1$, then $f(\omega)$ is also a root of unity.

