Asymptotic Calculus

April 2, 2017

1 Asymptotic notation

1.1 Definitions

Given two functions f(x) and g(x), we say that $f(x) \ll g(x)$ as $x \to \infty$ if any inequality of the form

$$|f(x)| \le 0.000 \dots 001 \cdot |g(x)|$$

eventually holds if you take x large enough. (How large you need x to be may depend on the number of zeroes in 0.000...001.) We can also write this as $g(x) \gg f(x)$ as $x \to \infty$.

We write o(f(x)) in an expression as shorthand for "some function g(x), whose exact form isn't important, such that $f(x) \gg g(x)$ ". For example, we have $\binom{n}{3} = \frac{n^3}{6} + o(n^3)$ as $n \to \infty$, hiding lower-order terms with n^2 and n.

We write $f(x) \sim g(x)$ as $x \to \infty$ if f(x) = g(x) + o(g(x)). For example, $\binom{n}{3} \sim \frac{n^3}{6}$ as $n \to \infty$. The statement $f(x) \sim g(x)$ can also be written as f(x) = g(x)(1 + o(1)), and is equivalent to saying that any inequality of the form

$$0.999\dots 999 \le \frac{f(x)}{g(x)} 1.000\dots 001$$

holds if you take x is large enough. (Again, how large you need x to be may depend on the number of zeroes or nines you want in this inequality.)

We can also say " $f(x) \ll g(x)$) as $x \to a$ ". This are defined in the same way, except that a relationship of the form

$$|f(x)| \le 0.000 \dots 001 \cdot |g(x)|$$

must hold not if x is large enough, but if x is close enough to a. We define "f(x) = o(g(x)) as $x \to a$ or " $f(x) \sim g(x)$ as $x \to a$ " in terms of \ll , in the same way as we did for $x \to \infty$.

1.2 Practice

- 1. For what constant C is $\binom{n}{5} \sim Cn^5$ true as $n \to \infty$?
- 2. Show that there is some N such that whenever n > N,
 - (a) n^2 exceeds 1000*n*. (d) 2^n exceeds n^{100} .
 - (b) 2^n exceeds n^2 . (e) 2^n exceeds $1000 \cdot n^{100}$.
 - (c) 2^n exceeds n^3 . (f) $2^{n^{0.01}}$ exceeds n.

3. Verify as many as you like of the following statements, for $x \to \infty$:

$$1 \ll \log x \ll (\log x)^{100} \ll x^{0.01} \ll \sqrt{x} \ll x \ll x^2 \ll 2^x \ll 3^x \ll x! \ll x^x.$$

- 4. The *n*th harmonic number H_n is equal to the sum $1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$.
 - (a) Given $H_n = \log n + \gamma + o(1)$ as $n \to \infty$, write down an expression for $(H_n)^2$ with an $o(\log n)$ error term.
 - (b) Given $H_n = \log n + \gamma + \frac{1}{2n} + o(\frac{1}{n})$ as $n \to \infty$, write down an expression for $(H_n)^2$ with the best error term you can.
 - (c) Write down an expression for $H_{2n} H_n$ with the best error term you can.
- 5. Prove that if $a_n \sim b_n$ as $n \to \infty$, then

$$\sum_{n=1}^{\infty} a_n \text{ converges} \quad \Longleftrightarrow \quad \sum_{n=1}^{\infty} b_n \text{ converges}.$$

2 Derivatives

2.1 Definition

For a fixed value x (and function f), if there is a constant C such that, as $h \to 0$,

$$f(x+h) = f(x) + Ch + o(h),$$

then we say that C is the derivative of f at x, denoted C = f'(x). Equivalent ways to say this using other notation:

$$f(x+h) - f(x) \sim f'(x) \cdot h$$
 $f(x+h) - (f(x) + f'(x) \cdot h) \ll h$

In other words, near a point a, we can approximate f(x) by f(a) + f'(a)(x-a).

2.2 Practice

- 1. Prove the product rule: if $h(x) = f(x) \cdot g(x)$, then $h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$.
- 2. Prove the chain rule: if h(x) = f(g(x)), then $h'(x) = f'(g(x)) \cdot g'(x)$.
- 3. Prove that, if $f'(x) \neq 0$, then there is a value y (near x) such that f(y) > f(x).

(The converse of this statement is that if you want to find the largest value of f(x), you figure out when f'(x) = 0.)

- 4. Prove that if $f(x) = x^n$ for an integer n > 0, then $f'(x) = nx^{n-1}$.
- 5. Using the fact that $e^x \sim x + 1$ as $x \to 0$, prove that if $f(x) = e^x$, then $f'(x) = e^x$.
- 6. Prove that f(x) = |x| does not have a derivative at 0.

3 More Problems

1. Without finding a formula for $1^3 + 2^3 + \cdots + n^3$, prove that there is a constant C such that

$$1^3 + 2^3 + \dots + n^3 \sim Cn^4$$

as $n \to \infty$. What can you say about C?

- 2. Find a function f(x) such that as $x \to \infty$, both of the following hold:
 - $f(x) \gg x^n$ for any integer n;
 - $f(x) \ll a^x$ for any real number a > 1.
- 3. (a) Use the inequality $\sin x \le x \le \tan x$ (ask C.J. if you want a proof) to show that $\sin x \sim x$ as $x \to 0$.
 - (b) Use the statement above to prove that if $f(x) = \sin x$ then $f'(x) = \cos x$.
- 4. (a) Prove that as $n \to \infty$, $\log n! \sim n \log n$.
 - (b) Prove that if n = k!, then as $n \to \infty$, $k \sim \frac{\log n}{\log \log n}$.
 - (c) A more precise estimate of n! is given by Stirling's formula:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
 as $n \to \infty$.

Use this to prove that $\binom{2n}{n} \sim \frac{4^n}{\sqrt{\pi n}}$ as $n \to \infty$.

5. The Chebyshev function $\vartheta(x)$ is defined as

$$\vartheta(x) = \sum_{p \leq x} \log p$$

where the sum ranges over only *prime* p between 2 and x. The prime-counting function $\pi(x)$ is just the number of primes less than or equal to x.

Assuming that $\vartheta(x) \sim x$ as $x \to \infty$, prove that $\pi(x) \sim \frac{x}{\log x}$ as $x \to \infty$.

- 6. Prove that the sum $\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$ of the reciprocals of the primes diverges.
- 7. Let P_n be the set of all *n*-digit palindromes. For example:

$$P_1 = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
$$P_2 = \{11, 22, 33, 44, 55, 66, 77, 88, 99\}$$
$$P_3 = \{101, 111, 121, \dots, 979, 989, 999\}$$

Find the best asymptotic estimate that you can of the sum

$$S_n = \sum_{p \in P_n} \frac{1}{p}$$

as $n \to \infty$.