1 Asymptotic notation

1.1 Definitions

Given two functions $f(x)$ and $g(x)$, we say that $f(x) \ll g(x)$ as $x \rightarrow \infty$ if any inequality of the form

$$
|f(x)| \leq 0.000 \ldots 001 \cdot|g(x)|
$$

eventually holds if you take x large enough. (How large you need x to be may depend on the number of zeroes in $0.000 \ldots 001$.) We can also write this as $g(x) \gg f(x)$ as $x \rightarrow \infty$.

We write $o(f(x))$ in an expression as shorthand for "some function $g(x)$, whose exact form isn't important, such that $f(x) \gg g(x)$ ". For example, we have $\binom{n}{3}=\frac{n^{3}}{6}+o\left(n^{3}\right)$ as $n \rightarrow \infty$, hiding lower-order terms with n^{2} and n.
We write $f(x) \sim g(x)$ as $x \rightarrow \infty$ if $f(x)=g(x)+o(g(x))$. For example, $\binom{n}{3} \sim \frac{n^{3}}{6}$ as $n \rightarrow \infty$. The statement $f(x) \sim g(x)$ can also be written as $f(x)=g(x)(1+o(1))$, and is equivalent to saying that any inequality of the form

$$
0.999 \ldots 999 \leq \frac{f(x)}{g(x)} 1.000 \ldots 001
$$

holds if you take x is large enough. (Again, how large you need x to be may depend on the number of zeroes or nines you want in this inequality.)

We can also say " $f(x) \ll g(x))$ as $x \rightarrow a$ ". This are defined in the same way, except that a relationship of the form

$$
|f(x)| \leq 0.000 \ldots 001 \cdot|g(x)|
$$

must hold not if x is large enough, but if x is close enough to a. We define " $f(x)=o(g(x))$ as $x \rightarrow a$ or " $f(x) \sim g(x)$ as $x \rightarrow a$ " in terms of \ll, in the same way as we did for $x \rightarrow \infty$.

1.2 Practice

1. For what constant C is $\binom{n}{5} \sim C n^{5}$ true as $n \rightarrow \infty$?
2. Show that there is some N such that whenever $n>N$,
(a) n^{2} exceeds $1000 n$.
(d) 2^{n} exceeds n^{100}.
(b) 2^{n} exceeds n^{2}.
(e) 2^{n} exceeds $1000 \cdot n^{100}$.
(c) 2^{n} exceeds n^{3}.
(f) $2^{n^{0.01}}$ exceeds n.
3. Verify as many as you like of the following statements, for $x \rightarrow \infty$:

$$
1 \ll \log x \ll(\log x)^{100} \ll x^{0.01} \ll \sqrt{x} \ll x \ll x^{2} \ll 2^{x} \ll 3^{x} \ll x!\ll x^{x}
$$

4. The $n^{\text {th }}$ harmonic number H_{n} is equal to the sum $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$.
(a) Given $H_{n}=\log n+\gamma+o(1)$ as $n \rightarrow \infty$, write down an expression for $\left(H_{n}\right)^{2}$ with an $o(\log n)$ error term.
(b) Given $H_{n}=\log n+\gamma+\frac{1}{2 n}+o\left(\frac{1}{n}\right)$ as $n \rightarrow \infty$, write down an expression for $\left(H_{n}\right)^{2}$ with the best error term you can.
(c) Write down an expression for $H_{2 n}-H_{n}$ with the best error term you can.
5. Prove that if $a_{n} \sim b_{n}$ as $n \rightarrow \infty$, then

$$
\sum_{n=1}^{\infty} a_{n} \text { converges } \Longleftrightarrow \sum_{n=1}^{\infty} b_{n} \text { converges. }
$$

2 Derivatives

2.1 Definition

For a fixed value x (and function f), if there is a constant C such that, as $h \rightarrow 0$,

$$
f(x+h)=f(x)+C h+o(h),
$$

then we say that C is the derivative of f at x, denoted $C=f^{\prime}(x)$. Equivalent ways to say this using other notation:

$$
f(x+h)-f(x) \sim f^{\prime}(x) \cdot h \quad f(x+h)-\left(f(x)+f^{\prime}(x) \cdot h\right) \ll h
$$

In other words, near a point a, we can approximate $f(x)$ by $f(a)+f^{\prime}(a)(x-a)$.

2.2 Practice

1. Prove the product rule: if $h(x)=f(x) \cdot g(x)$, then $h^{\prime}(x)=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$.
2. Prove the chain rule: if $h(x)=f(g(x))$, then $h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
3. Prove that, if $f^{\prime}(x) \neq 0$, then there is a value y (near x) such that $f(y)>f(x)$.
(The converse of this statement is that if you want to find the largest value of $f(x)$, you figure out when $f^{\prime}(x)=0$.)
4. Prove that if $f(x)=x^{n}$ for an integer $n>0$, then $f^{\prime}(x)=n x^{n-1}$.
5. Using the fact that $e^{x} \sim x+1$ as $x \rightarrow 0$, prove that if $f(x)=e^{x}$, then $f^{\prime}(x)=e^{x}$.
6. Prove that $f(x)=|x|$ does not have a derivative at 0 .

3 More Problems

1. Without finding a formula for $1^{3}+2^{3}+\cdots+n^{3}$, prove that there is a constant C such that

$$
1^{3}+2^{3}+\cdots+n^{3} \sim C n^{4}
$$

as $n \rightarrow \infty$. What can you say about C ?
2. Find a function $f(x)$ such that as $x \rightarrow \infty$, both of the following hold:

- $f(x) \gg x^{n}$ for any integer n;
- $f(x) \ll a^{x}$ for any real number $a>1$.

3. (a) Use the inequality $\sin x \leq x \leq \tan x$ (ask C.J. if you want a proof) to show that $\sin x \sim x$ as $x \rightarrow 0$.
(b) Use the statement above to prove that if $f(x)=\sin x$ then $f^{\prime}(x)=\cos x$.
4. (a) Prove that as $n \rightarrow \infty, \log n!\sim n \log n$.
(b) Prove that if $n=k$!, then as $n \rightarrow \infty, k \sim \frac{\log n}{\log \log n}$.
(c) A more precise estimate of n ! is given by Stirling's formula:

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \text { as } n \rightarrow \infty
$$

Use this to prove that $\binom{2 n}{n} \sim \frac{4^{n}}{\sqrt{\pi n}}$ as $n \rightarrow \infty$.
5. The Chebyshev function $\vartheta(x)$ is defined as

$$
\vartheta(x)=\sum_{p \leq x} \log p
$$

where the sum ranges over only prime p between 2 and x. The prime-counting function $\pi(x)$ is just the number of primes less than or equal to x.

Assuming that $\vartheta(x) \sim x$ as $x \rightarrow \infty$, prove that $\pi(x) \sim \frac{x}{\log x}$ as $x \rightarrow \infty$.
6. Prove that the sum $\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots$ of the reciprocals of the primes diverges.
7. Let P_{n} be the set of all n-digit palindromes. For example:

$$
\begin{aligned}
P_{1} & =\{1,2,3,4,5,6,7,8,9\} \\
P_{2} & =\{11,22,33,44,55,66,77,88,99\} \\
P_{3} & =\{101,111,121, \ldots, 979,989,999\}
\end{aligned}
$$

Find the best asymptotic estimate that you can of the sum

$$
S_{n}=\sum_{p \in P_{n}} \frac{1}{p}
$$

as $n \rightarrow \infty$.

