Combinatorics Review 2

David Altizio

- 1. (HMMT 2005 Combinatorics #2) How many nonempty subsets of $\{1, 2, 3, ..., 12\}$ have the property that the sum of the largest element and the smallest element is 13?
- 2. (HMMT 2013 Combinatorics #2) If Alex does not sing on Saturday, then she has a 70% chance of singing on Sunday; however, to rest her voice, she never sings on both days. If Alex has a 50% chance of singing on Sunday, find the probability that she sings on Saturday.
- 3. (HMMT 2003 Combinatorics #6) In Porter A19D, 44 students are seated in 9 rows of 5 chairs.¹ The chair in the back-left corner is unoccupied. C.J. decides to reassign the seats such that each student will occupy a chair adjacent to his/her present one (i.e. move one desk forward, back, left or right). In how many ways can this reassignment be made?
- 4. (CMIMC 2016 Combinatorics #4) Let S be a regular 18-gon, and for two vertices in S define the *distance* between them to be the length of the shortest path along the edges of S between them (e.g. adjacent vertices have distance 1). Find the number of ways to choose three distinct vertices from S such that no two of them have distance 1, 8, or 9.
- 5. (HMMT 2008 Combinatorics #4) How many rearrangements of the letters of "HMMTH-MMT" do not contain the substring "HMMT"? (For instance, one such arrangement is HMMHMTMT.)
- 6. (Math Kangaroo 2012) In the center of every cell of a 5×5 board stands one kangaroo. Suddenly, a thunder strikes, and each kangaroo is startled so that it jumps over the side of its cell into a neighboring cell, possibly joining one or more other kangaroos there. What is the greatest possible number of cells that are now empty?
- 7. (BMT 2017 Discrete #6) Let $S = \{1, 2, ..., 6\}$. How manny functions $f : S \to S$ are there such that $f^5(s) = 1$ for all $s \in S$? Note that

$$f^{5}(s) = f(f(f(f(s)))))$$

8. (CMIMC 2016 Team #9, simplified) For how many permutations π of $\{1, 2, ..., 6\}$ does there exist an integer N such that

$$N \equiv \pi(i) \pmod{i}$$
 for all integers $1 \le i \le 6$?

- 9. (NIMO 26 #3) Six competitors enter a round-robin tournament (each pair of players plays exactly one round). Each round between two players is equally likely to result in a win for a given player, a loss for that player, or a tie. The results of the tournament are *nice* if for all triples of distinct players (A, B, C),
 - If A beat B and B beat C, then A also beat C;
 - If A and B tied, then either C beat both A and B, or C lost to both A and B.

Find the probability that the results of the tournament are nice.

¹If only we could fit this many chairs in real life!

10. (Red MOP 2006) There are 51 senators in a senate. The senate needs to be divided into n committees such that each senator is on exactly one committee. Each senator hates exactly three other senators. (If senator A hates senator B, then senator B does *not* necessarily hate senator A.) Find the smallest n such that it is always possible to arrange the committees so that no senator hates another senator on his or her committee.