Optimization Problems

Misha Lavrov

ARML Practice 11/10/2013

1. Triangle-free graphs.

A triangle in a graph is a set of 3 vertices such that all the edges between them are present.
(a) Find a graph with 10 vertices and 25 edges that contains no triangles.
(b) Show that any graph with 10 vertices that contains no triangles can have at most 25 edges.
(Hint: in general, we can say that any graph with n vertices and no triangle has at most $\frac{n^{2}}{4}$ edges. You can prove this by induction on n, among other methods.)

2. Monotonic subsequences.

The integers $1,2, \ldots, 100$ are written in some arbitrary order. A monotonic subsequence is a subsequence of integers $a_{1}, a_{2}, \ldots, a_{k}$ in the order they are written down, such that either $a_{1}<a_{2}<\cdots<a_{k}$ or $a_{1}>a_{2}>\cdots>a_{k}$.
(a) Show that you can always find a monotonic subsequence of length 10.
(b) Find an ordering with no monotonic subsequence of length 11.
(c) How does this generalize to integers $1,2, \ldots, n$ for arbitrary n ?

3. Coloring points in the grid.

How large an $a \times b$ grid of points can you color red and blue without getting a rectangle whose 4 corners have the same color? ${ }^{1}$
(a) If you haven't done so already, prove that there is always such a rectangle in a coloring of the 3×7 grid - you've seen this problem two weeks ago.
(b) What coloring of a smaller grid immediately follows from the proof? Can you color a 6×6 grid (that being the largest grid not containing a 3×7 grid)? If not, what are the sizes of grids you can color?
(c) Generalize the problem to $k>2$ colors.

[^0]
4. Sidon sets.

A Sidon set is a set of integers such that all the sums of two numbers in the set are different: if a, b, c, d are 4 numbers from the set, and $a+b=c+d$, then either $a=c$ and $b=d$, or $a=d$ and $b=c$. The set $\{1,2,5,7\}$ is Sidon; the set $\{1,2,5,6\}$ is not, because $1+6=2+5$.
(a) Use the pigeonhole principle to prove an upper bound on the number of elements in a Sidon set containing only numbers between 1 and 100. (There are two bounds to be obtained here, one better than the other.)
(b) Use any method you like to find as large a Sidon set as possible containing only numbers between 1 and 100 .

5. Coloring complete graphs.

The complete graph K_{n} is the graph with n vertices in which each pair of vertices is connected by an edge. We color the edges of K_{n} red and blue.
(a) How large can n get so that such a coloring exists without obtaining a red or blue triangle (i.e. 3 vertices of K_{n} such that the 3 edges between them are all the same color)?
(b) The Ramsey number $R(t)$ is the smallest n such that in any coloring of K_{n}, there exists a monochromatic $K_{t}: t$ vertices such that all of the edges between them are the same color.

In part (a) we've found $R(3)$. Do your best to find $R(4)$.
(c) We generalize $R(t)$ to $R(s, t)$: the smallest n such that any coloring of K_{n} has a red K_{s} or a blue K_{t} (so $R(t)=R(t, t)$ in this new notation). Prove that $R(s, t) \leq R(s, t-1)+$ $R(s-1, t)$, and deduce an upper bound on $R(t)$.
(Hint: use the pigeonhole principle.)
(d) Suppose $n=2^{t / 2}$, and we take a random coloring of K_{n} : for each edge, we flip a coin to decide if it is red or blue. Count the expected number of monochromatic K_{t} 's: this is the sum, over all sets of t vertices, of the probability that all edges between them are the same color.

Show that the answer is less than 1. This tells us that a coloring of K_{n} with no monochromatic K_{t}^{\prime} 's exists: if it didn't, then there would always be at least one monochromatic K_{t}, and the expected number would be at least 1 as well. So $R(t)>2^{t / 2}$.

[^0]: ${ }^{1}$ We assume the sides of the rectangle are parallel to the sides of the grid to avoid funny business.

