Miscellaneous Functions

C.J. Argue

Logarithms

For any $b>0$, the function $\log _{b}$ is defined by the property that $\log _{b}\left(b^{x}\right)=b^{\log _{b}(x)}=x$. In other words, $\log _{b}(x)$ is the inverse function of b^{x}. The basic properties of log are:

- $\log _{b}\left(x^{y}\right)=y \log _{b}(x)$.
- $\log _{b}(x y)=\log _{b}(x)+\log _{b}(y)$ and $\log _{b}(x / y)=\log _{b}(x)-\log _{b}(y)$.
- $\log _{b}(c)=\frac{\log _{a}(c)}{\log _{a}(b)}$ for any $a>0$.

The following useful properties can be derived from the above:

- $\log _{a} b=\frac{1}{\log _{b} a}$.
- $\log _{a^{n}} b=\frac{1}{n} \log _{a} b$.

Floor/Greatest Integer Function

The floor function (also called the greatest integer function) is defined by $\lfloor x\rfloor$ equals the greatest integer y such that $y \leq x$. For example $\lfloor 1\rfloor=1,\lfloor 2.3\rfloor=2,\lfloor-10.2\rfloor=-11$. An analogous but less common function is the ceiling function, defined by $\lceil x\rceil$ equals the least integer y such that $x \leq y$. For example, $\lceil\pi\rceil=4,\lceil-3.333\rceil=-3$.

The most common application of the function $\lfloor\cdot\rfloor$ is the following:

- If n is any nonnegative integer and p is any prime, then the greatest k such that $p^{k} \mid n$! is given by $k=\sum_{j=1}^{\infty}\left\lfloor\frac{n}{p^{j}}\right\rfloor$. Note that for $j>\log _{k} n$, the term $\left\lfloor\frac{n}{p^{j}}\right\rfloor=0$, so this is always a finite sum.

1 Problems

Logarithms

1. Prove the last two log identities.
2. (AIME 00) Compute $\frac{2}{\log _{4} 2000^{6}}+\frac{3}{\log _{5} 2000^{6}}$.
3. (ARML 90) Compute the $k>2$ such that $\log _{10}(k-2)!+\log _{10}(k-1)!+2=2 \log _{10} k!$.
4. (ARML 80) Compute $\left(\log _{2} 25\right)\left(\log _{5} 27\right)\left(\log _{3} 16\right)$.
5. (ARML 77) Find all real x such that $x^{2 \log _{2} x}=8$.
6. (HMMT 02) Given that a, b, c are positive real numbers such that $\log _{a} b+\log _{b} c+\log _{c} a=$ 0 , compute $\left(\log _{a} b\right)^{3}+\left(\log _{b} c\right)^{3}+\left(\log _{c} a\right)^{3}$.

Greatest integer

1. How many 0 s are at the end of the decimal expansion of 100 !? What about the base 12 expansion?
2. (HMMT 10) Compute the sum of the positive solutions to $2 x^{2}-x\lfloor x\rfloor=5$.
3. (HMMT 02) Determine all L for which $\sum_{n=1}^{L}\left\lfloor\frac{n^{3}}{9}\right\rfloor$ is a perfect square. Hint: use the formula $\sum_{n=1}^{k} n^{3}=\frac{k^{2}(k+1)^{2}}{4}$.
4. (IMO 68) Find a closed form for $\sum_{k=0}^{\infty}\left\lfloor\frac{n+2^{k}}{2^{k+1}}\right\rfloor$ in terms of n.

Application of Greatest Integer (ARML 83)

The goal is to use the greatest integer function to show that for all positive integers a, b, $\frac{(2 a)!(2 b+1)!}{a!b!(a+b+1)!}$ and $\frac{(2 a)!(2 b)!}{2 \cdot a!b!(a+b)!}$ are integers. For a challenge, don't read any further and prove this directly. For a guided solution, prove the following.

1. For any $x \in \mathbb{R}, a \in \mathbb{Z},\lfloor a+x\rfloor=a+\lfloor x\rfloor$.
2. If $x<y$ then $\lfloor x\rfloor \leq\lfloor y\rfloor$.
3. If $r, s \in[0,1)$ then $\lfloor 2 r\rfloor+\lfloor 2 s\rfloor \geq\lfloor r\rfloor+\lfloor s\rfloor+\lfloor r+s\rfloor$. The same holds for all $r, s \in \mathbb{R}$.
4. If $a, b, c \in \mathbb{Z}$ and $c>0$, then $\left\lfloor\frac{2 a}{c}\right\rfloor+\left\lfloor\frac{2 b+1}{c}\right\rfloor \geq\left\lfloor\frac{a}{c}\right\rfloor+\left\lfloor\frac{b}{c}\right\rfloor+\left\lfloor\frac{a+b+1}{c}\right\rfloor$.
5. If a, b are positive integers, then $\frac{(2 a)!(2 b+1)!}{a!b!(a+b+1)!}$ and $\frac{(2 a)!(2 b)!}{2 \cdot a!b!(a+b)!}$ are integers.

Logarithms and Greatest Integer

1. (AIME 1994) Find the positive integer n for which $\sum_{k=1}^{n}\left\lfloor\log _{2} k\right\rfloor=1994$.
2. (AIME 04) Let S be the set of ordered pairs (x, y) such that $x, y \in[0,1]$, and $\left\lfloor\log _{2} \frac{1}{x}\right\rfloor$ and $\left\lfloor\log _{5} \frac{1}{y}\right\rfloor$ are both even. Find the area of S.
3. (IMO 76) Let $u_{0}=2, u_{1}=\frac{5}{2}, u_{n+1}=u_{n}\left(u_{n-1}^{2}-2\right)-u_{1}$ for all $n \geq 1$. Prove that $3 \log _{2}\left\lfloor u_{n}\right\rfloor=2^{n}-(-1)^{n}$.
