Generating Functions I

Misha Lavrov

ARML Practice 5/4/2014

Warm-up

Problems

1. (ARML 2010 T-6.) Compute the number of 4-letter "words" (sequences of 4 letters, whether or not they appear in the dictionary) containing at least two E's.
2. A nonstandard die has the following six faces.

If three such dice are rolled, what is the probability of getting a total of 7 ?

Warm-up

Solution to Problem \# 1

We will solve problem \# 1 in the following unusual way: consider the polynomial

$$
\Psi=(A+B+C+\cdots+Y+Z)^{4}
$$

If we expand Ψ, we get the sum

$$
\Psi=A A A A+A A A B+A A A C+\cdots+Z Z Z Y+Z Z Z Z .
$$

In other words, Ψ is the sum of all 4 -letter words.

Warm-up

Solution to Problem \# 1

We only care about whether a given letter is E or not, so define

$$
\begin{aligned}
\Upsilon & =(N+N+N+N+E+N+N+\cdots+N+N)^{4} \\
& =(E+25 N)^{4} \\
& =E^{4}+100 E^{3} N+3750 E^{2} N^{2}+62500 E N^{3}+390625 N^{4} .
\end{aligned}
$$

Warm-up

Solution to Problem \# 1

We only care about whether a given letter is E or not, so define

$$
\begin{aligned}
\Upsilon & =(N+N+N+N+E+N+N+\cdots+N+N)^{4} \\
& =(E+25 N)^{4} \\
& =E^{4}+100 E^{3} N+3750 E^{2} N^{2}+62500 E N^{3}+390625 N^{4} .
\end{aligned}
$$

Each word in Ψ became a word in Υ, but we have forgotten some information; for example, "MEEP" became "NEEN" and then $N^{2} E^{2}$. The words with at least two E's became either E^{4} or $E^{3} N$ or $E^{2} N^{2}$, so there are $1+100+3750=3851$ such words.

Warm-up

Solution to Problem \# 2

We can do the same thing in the second problem. The outcomes of a single die are given by the polynomial

$$
\Delta=\square+\square+\boxed{\bullet}+\square+\boxed{\square}+\square
$$

and the outcomes of three dice rolls are given by

$$
\Delta^{3}=(\boxed{\bullet}+\boxed{\bullet}+\boxed{\bullet}+\boxed{\bullet}+\boxed{\bullet}+\square \cdot \square)^{3}
$$

Warm-up

Solution to Problem \# 2

We can do the same thing in the second problem. The outcomes of a single die are given by the polynomial

$$
\Delta=\square+\square+\boxed{\bullet}+\square+\square+\square \cdot \square
$$

and the outcomes of three dice rolls are given by

$$
\Delta^{3}=(\boxed{\bullet}+\square+\boxed{\bullet}+\boxed{\bullet}+\boxed{\bullet}+\square)^{3}
$$

However, these outcomes are in a form like $\because \cdot \square \cdot \square$ or $\because .0 .0$. All we care about is the total value of the three dice. How do we get the total out of such a product?

Warm-up

Solution to Problem \# 2

We "forget some details" by making the substitutions $\bullet=x$, $\square \cdot x^{2}$, and $\because \cdot=x^{3}$. Then $\because \cdot \cdot \cdot \cdot$ becomes $x^{3} \cdot x \cdot x^{3}=x^{7}$: the power of x is the total value of the dice.

With this substitution we get the function $F(x)=\left(2 x+3 x^{2}+x^{3}\right)^{3}$ in place of Δ^{3}. We can expand $F(x)$ to get

$$
F(x)=x^{9}+9 x^{8}+33 x^{7}+63 x^{6}+66 x^{5}+36 x^{4}+8 x^{3}
$$

Warm-up

Solution to Problem \# 2

We "forget some details" by making the substitutions $\bullet=x$, $\square=x^{2}$, and $\because \cdot=x^{3}$. Then $\because \cdot \cdot \cdot \cdot$, becomes $x^{3} \cdot x \cdot x^{3}=x^{7}$: the power of x is the total value of the dice.

With this substitution we get the function $F(x)=\left(2 x+3 x^{2}+x^{3}\right)^{3}$ in place of Δ^{3}. We can expand $F(x)$ to get

$$
F(x)=x^{9}+9 x^{8}+33 x^{7}+63 x^{6}+66 x^{5}+36 x^{4}+8 x^{3}
$$

The number of dice outcomes with a value of 7 is the coefficient of x^{7}, which I will write $\left[x^{7}\right] F(x)=33$.
So the probability of getting a total of 7 is $\frac{33}{216}=\frac{11}{72}$.

Infinitely many options

(ARML 1995 T-3. ${ }^{1}$) Compute the number of ways in which 45 one-dollar bills can be distributed to 7 people so that no person receives less than $\$ 5$.

Infinitely many options

(ARML 1995 T-3. ${ }^{1}$) Compute the number of ways in which 45 one-dollar bills can be distributed to 7 people so that no person receives less than $\$ 5$.
Let $G(x)=\left(x^{5}+x^{6}+x^{7}+x^{8}+\cdots\right)^{7}$. A term in the expansion of $G(x)$ might look like $x^{6} x^{15} x^{5} x^{105} x^{12} x^{7} x^{5}$. We think of this as encoding a distribution of money in which the 7 people receive $\$ 6$, $\$ 15, \$ 5, \$ 105, \$ 12, \$ 7$, and $\$ 5$.

Infinitely many options

(ARML 1995 T-3. ${ }^{1}$) Compute the number of ways in which 45 one-dollar bills can be distributed to 7 people so that no person receives less than $\$ 5$.

Let $G(x)=\left(x^{5}+x^{6}+x^{7}+x^{8}+\cdots\right)^{7}$. A term in the expansion of $G(x)$ might look like $x^{6} x^{15} x^{5} x^{105} x^{12} x^{7} x^{5}$. We think of this as encoding a distribution of money in which the 7 people receive $\$ 6$, $\$ 15, \$ 5, \$ 105, \$ 12, \$ 7$, and $\$ 5$.

But of course when simplifying $G(x)$, we don't stop there. The term above gets simplified to $x^{6+15+5+105+12+7+5}=x^{155}$. All the information we have left is that the total amount of money we've given out is $\$ 155$.

[^0]
Infinitely many options

(ARML 1995 T-3. ${ }^{1}$) Compute the number of ways in which 45 one-dollar bills can be distributed to 7 people so that no person receives less than $\$ 5$.

Let $G(x)=\left(x^{5}+x^{6}+x^{7}+x^{8}+\cdots\right)^{7}$. A term in the expansion of $G(x)$ might look like $x^{6} x^{15} x^{5} x^{105} x^{12} x^{7} x^{5}$. We think of this as encoding a distribution of money in which the 7 people receive $\$ 6$, $\$ 15, \$ 5, \$ 105, \$ 12, \$ 7$, and $\$ 5$.

But of course when simplifying $G(x)$, we don't stop there. The term above gets simplified to $x^{6+15+5+105+12+7+5}=x^{155}$. All the information we have left is that the total amount of money we've given out is $\$ 155$.

This means that we can answer the ARML question by computing $\left[x^{45}\right] G(x)$.

[^1]
Some fancy algebra

Using the formula for the sum of a geometric series, we can write

$$
G(x)=\left(\frac{x^{5}}{1-x}\right)^{7}=\frac{x^{35}}{(1-x)^{7}}
$$

The coefficient of x^{45} in $G(x)$ is the coefficient of x^{10} in $\frac{1}{(1-x)^{7}}$.

Some fancy algebra

Using the formula for the sum of a geometric series, we can write

$$
G(x)=\left(\frac{x^{5}}{1-x}\right)^{7}=\frac{x^{35}}{(1-x)^{7}}
$$

The coefficient of x^{45} in $G(x)$ is the coefficient of x^{10} in $\frac{1}{(1-x)^{7}}$.
Using the binomial theorem to expand $(1-x)^{-7}$, we get

$$
\frac{1}{(1-x)^{7}}=1-\binom{-7}{1} x+\binom{-7}{2} x^{2}-\binom{-7}{3} x^{3}+\cdots
$$

So the solution is $\binom{-7}{10}$. How do we compute it?

Some fancy algebra

Using the formula for the sum of a geometric series, we can write

$$
G(x)=\left(\frac{x^{5}}{1-x}\right)^{7}=\frac{x^{35}}{(1-x)^{7}}
$$

The coefficient of x^{45} in $G(x)$ is the coefficient of x^{10} in $\frac{1}{(1-x)^{7}}$.
Using the binomial theorem to expand $(1-x)^{-7}$, we get

$$
\frac{1}{(1-x)^{7}}=1-\binom{-7}{1} x+\binom{-7}{2} x^{2}-\binom{-7}{3} x^{3}+\cdots
$$

So the solution is $\binom{-7}{10}$. How do we compute it?

$$
\binom{-7}{10}=\frac{-7 \cdot-8 \cdot-9 \cdots-16}{10!}=\frac{16!}{6!10!}=\binom{16}{6} .
$$

Exercises

1. 1.1 Compute $\binom{-1}{5},\binom{-2}{6}$, and $\binom{-3}{7}$.
1.2 Show that $\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+\cdots$.
1.3 Simplify the expression $\binom{-1 / 2}{n}$.
2. 2.1 Write an expression for $G(x)$ such that the coefficient of x^{n}, $\left[x^{n}\right] G(x)$, is the number of ways to give n one-dollar bills to 7 people, if each person can receive at most $\$ 3$.
2.2 Write an expression for $G(x)$ such that $\left[x^{n}\right] G(x)$ is the number of ways to give n one-dollar bills to 7 people, if the number 4 is unlucky, and therefore nobody may be given exactly $\$ 4$.

Solutions

1. 1.1 In general, $\binom{-\mathbf{n}}{\mathbf{k}}=\left(\mathbf{- 1} \mathbf{)}^{\mathbf{k}}\binom{\mathbf{n}+\mathbf{k}-1}{\mathrm{k}}\right.$, so $\binom{-1}{5}=-\binom{5}{5}=-1$,

$$
\binom{-2}{6}=\binom{7}{6}=7, \text { and }\binom{-3}{7}=-\binom{9}{7}=-36 .
$$

1.2 The coefficient of x^{n} in $\frac{1}{(1-x)^{2}}$ is

$$
(-1)^{n}\binom{-2}{n}=\binom{n+2-1}{2-1}=n+1 .
$$

$$
\begin{array}{ll}
& 1.3\binom{-1 / 2}{n}=\left(-\frac{1}{4}\right)^{n}\binom{2 n}{n} \\
\text { 2. } & 2.1 G(x)=\left(1+x+x^{2}+x^{3}\right)^{7} . \\
& 2.2 G(x)=\left(\frac{1}{1-x}-x^{4}\right)^{7} .
\end{array}
$$

Playing blackjack with dice

Suppose we acquire the following (slightly simpler) non-standard die:

$$
\begin{array}{llllll}
\bullet- & \square & \bullet & \square & \square & \square
\end{array}
$$

If we keep rolling the die until the total is at least 21 , what is the probability that we hit 21 exactly?

Playing blackjack with dice

Suppose we acquire the following (slightly simpler) non-standard die:

$$
\begin{array}{llllll}
\bullet & \square & \boxed{\bullet} & \bullet \cdot & \boxed{\bullet} & \boxed{\bullet}
\end{array}
$$

If we keep rolling the die until the total is at least 21 , what is the probability that we hit 21 exactly?

1. The outcomes of one roll are given by $D=\frac{2}{3} \cdot \square+\frac{1}{3} \cdot \square \cdot$

Playing blackjack with dice

Suppose we acquire the following (slightly simpler) non-standard die:

$$
\begin{array}{llllll}
\bullet- & \square & \bullet & \bullet & \boxed{\bullet} & \boxed{\bullet}
\end{array}
$$

If we keep rolling the die until the total is at least 21 , what is the probability that we hit 21 exactly?

1. The outcomes of one roll are given by $D=\frac{2}{3} \cdot \square+\frac{1}{3} \cdot \square \cdot$
2. Two rolls are described by $D^{2}=\frac{4}{9} \cdot \bullet^{2}+\frac{4}{9} \cdot \square \cdot \square+\frac{1}{9} \cdot \square^{2}$.

Playing blackjack with dice

Suppose we acquire the following (slightly simpler) non-standard die:

$$
\begin{array}{llllll}
\bullet & \bullet & \bullet & \square & \square & \square \\
\hline
\end{array}
$$

If we keep rolling the die until the total is at least 21 , what is the probability that we hit 21 exactly?

1. The outcomes of one roll are given by $D=\frac{2}{3} \cdot \square+\frac{1}{3} \cdot \square$.
2. Two rolls are described by $D^{2}=\frac{4}{9} \cdot \bullet^{2}+\frac{4}{9} \cdot \square \cdot \square+\frac{1}{9} \cdot \square^{2}$.
3. For any number of rolls, take $D^{0}+D^{1}+D^{2}+D^{3}+\cdots$. This is a geometric series, which sums to $\frac{1}{1-\frac{2}{3} \cdot \cdot-\frac{1}{3} \cdot \cdot \cdot}$.

Playing blackjack with dice

Suppose we acquire the following (slightly simpler) non-standard die:

$$
\begin{array}{llllll}
\bullet- & \square & \bullet & \square & \square & \square
\end{array}
$$

If we keep rolling the die until the total is at least 21 , what is the probability that we hit 21 exactly?

1. The outcomes of one roll are given by $D=\frac{2}{3} \cdot \square+\frac{1}{3} \cdot \square \cdot$
2. Two rolls are described by $D^{2}=\frac{4}{9} \cdot \bullet^{2}+\frac{4}{9} \cdot \square \cdot \square+\frac{1}{9} \cdot \square^{2}$.
3. For any number of rolls, take $D^{0}+D^{1}+D^{2}+D^{3}+\cdots$. This is a geometric series, which sums to $\frac{1}{1-\frac{2}{3} \cdot \bullet^{-\frac{1}{3}} \cdot \boldsymbol{D}}$.
4. To find the total of each roll, let $\bullet=x$ and $\square=x^{2}$:

$$
P(x)=\frac{1}{1-\frac{2}{3} x-\frac{1}{3} x^{2}}
$$

What can we do with this thing?

Approach \#0: Extract the first few terms

Given the expression $P(x)=\frac{1}{1-\frac{2}{3} x-\frac{1}{3} x^{2}}$, what can we do? We would like to know the coefficient of x^{21} for this particular problem; in general, we want to know a formula for the coefficient of x^{n}.

What can we do with this thing?

Approach \#0: Extract the first few terms

Given the expression $P(x)=\frac{1}{1-\frac{2}{3} x-\frac{1}{3} x^{2}}$, what can we do? We would like to know the coefficient of x^{21} for this particular problem; in general, we want to know a formula for the coefficient of x^{n}.

Think of $P(x)$ as $p_{0}+p_{1} x+p_{2} x^{2}+p_{3} x^{3}+\cdots$. We can obtain p_{0} easily: $p_{0}=P(0)=1$.

What can we do with this thing?

Approach \#0: Extract the first few terms

Given the expression $P(x)=\frac{1}{1-\frac{2}{3} x-\frac{1}{3} x^{2}}$, what can we do? We would like to know the coefficient of x^{21} for this particular problem; in general, we want to know a formula for the coefficient of x^{n}.
Think of $P(x)$ as $p_{0}+p_{1} x+p_{2} x^{2}+p_{3} x^{3}+\cdots$. We can obtain p_{0} easily: $p_{0}=P(0)=1$.
Now that we know $P(x)=1+p_{1} x+p_{2} x^{2}+p_{3} x^{3}+\cdots$, we can manipulate this to bring p_{1} to the front. We have

$$
\frac{P(x)-1}{x}=p_{1}+p_{2} x+p_{3} x^{2}+\cdots
$$

but we can also work out $\frac{P(x)-1}{x}=\frac{\frac{2}{3}+\frac{1}{3} x}{1-\frac{2}{3} x-\frac{1}{3} x^{2}}$. Evaluating this at 0 gives us $p_{1}=\frac{2}{3}$.

What can we do with this thing?

Approach \#0: Extract the first few terms

Given the expression $P(x)=\frac{1}{1-\frac{2}{3} x-\frac{1}{3} x^{2}}$, what can we do? We would like to know the coefficient of x^{21} for this particular problem; in general, we want to know a formula for the coefficient of x^{n}.

Think of $P(x)$ as $p_{0}+p_{1} x+p_{2} x^{2}+p_{3} x^{3}+\cdots$. We can obtain p_{0} easily: $p_{0}=P(0)=1$.
Now that we know $P(x)=1+p_{1} x+p_{2} x^{2}+p_{3} x^{3}+\cdots$, we can manipulate this to bring p_{1} to the front. We have

$$
\frac{P(x)-1}{x}=p_{1}+p_{2} x+p_{3} x^{2}+\cdots
$$

but we can also work out $\frac{P(x)-1}{x}=\frac{\frac{2}{3}+\frac{1}{3} x}{1-\frac{2}{3} x-\frac{1}{3} x^{2}}$. Evaluating this at 0 gives us $p_{1}=\frac{2}{3}$. We could keep going, but 21 is a long way away.

What can we do with this thing?

Approach \#1: Find a recursive formula

We can also rewrite $P(x)=\frac{1}{1-\frac{2}{3} x-\frac{1}{3} x^{2}}$ as

$$
\left(1-\frac{2}{3} x-\frac{1}{3} x^{2}\right) P(x)=1 \quad \Leftrightarrow \quad P(x)=1+\frac{2}{3} x P(x)+\frac{1}{3} x^{2} P(x)
$$

What can we do with this thing?

Approach \#1: Find a recursive formula

We can also rewrite $P(x)=\frac{1}{1-\frac{2}{3} x-\frac{1}{3} x^{2}}$ as

$$
\left(1-\frac{2}{3} x-\frac{1}{3} x^{2}\right) P(x)=1 \quad \Leftrightarrow \quad P(x)=1+\frac{2}{3} x P(x)+\frac{1}{3} x^{2} P(x)
$$

If we take the coefficient of x^{n}, for $n \geq 1$, we get

$$
\begin{aligned}
{\left[x^{n}\right] P(x) } & =\left[x^{n}\right]\left(1+\frac{2}{3} x P(x)+\frac{1}{3} x^{2} P(x)\right) \\
& =\left[x^{n}\right]\left(\frac{2}{3} x P(x)\right)+\left[x^{n}\right]\left(\frac{1}{3} x^{2} P(x)\right) \\
& =\frac{2}{3}\left[x^{n-1}\right] P(x)+\frac{1}{3}\left[x^{n-2}\right] P(x) .
\end{aligned}
$$

What can we do with this thing?

Approach \#1: Find a recursive formula

We can also rewrite $P(x)=\frac{1}{1-\frac{2}{3} x-\frac{1}{3} x^{2}}$ as

$$
\left(1-\frac{2}{3} x-\frac{1}{3} x^{2}\right) P(x)=1 \quad \Leftrightarrow \quad P(x)=1+\frac{2}{3} x P(x)+\frac{1}{3} x^{2} P(x)
$$

If we take the coefficient of x^{n}, for $n \geq 1$, we get

$$
\begin{aligned}
{\left[x^{n}\right] P(x) } & =\left[x^{n}\right]\left(1+\frac{2}{3} x P(x)+\frac{1}{3} x^{2} P(x)\right) \\
& =\left[x^{n}\right]\left(\frac{2}{3} x P(x)\right)+\left[x^{n}\right]\left(\frac{1}{3} x^{2} P(x)\right) \\
& =\frac{2}{3}\left[x^{n-1}\right] P(x)+\frac{1}{3}\left[x^{n-2}\right] P(x) .
\end{aligned}
$$

This gives us a recursive formula: $p_{n}=\frac{2}{3} p_{n-1}+\frac{1}{3} p_{n-2}$.

What can we do with this thing?

Approach \#2: Use partial fractions
Since $1-\frac{2}{3} x-\frac{1}{3} x^{2}$ factors as $(1-x)\left(1+\frac{1}{3} x\right)$, we can write

$$
P(x)=\frac{1}{1-\frac{2}{3} x-\frac{1}{3} x^{2}}=\frac{A}{1-x}+\frac{B}{1+\frac{1}{3} x} .
$$

What can we do with this thing?

Approach \#2: Use partial fractions
Since $1-\frac{2}{3} x-\frac{1}{3} x^{2}$ factors as $(1-x)\left(1+\frac{1}{3} x\right)$, we can write

$$
P(x)=\frac{1}{1-\frac{2}{3} x-\frac{1}{3} x^{2}}=\frac{A}{1-x}+\frac{B}{1+\frac{1}{3} x} .
$$

To find A and B, just set x to some trial values:

$$
\begin{cases}1=A+B & (x=0) \\ \frac{1}{0}=\frac{1}{0} A+\frac{3}{4} B & (x=1)\end{cases}
$$

What can we do with this thing?

Approach \#2: Use partial fractions
Since $1-\frac{2}{3} x-\frac{1}{3} x^{2}$ factors as $(1-x)\left(1+\frac{1}{3} x\right)$, we can write

$$
P(x)=\frac{1}{1-\frac{2}{3} x-\frac{1}{3} x^{2}}=\frac{A}{1-x}+\frac{B}{1+\frac{1}{3} x} .
$$

To find A and B, just set x to some trial values:

$$
\begin{cases}1=A+B & (x=0) \\ -\frac{1}{4}=-\frac{1}{2} A+\frac{1}{2} B & (x=3)\end{cases}
$$

What can we do with this thing?

Approach \#2: Use partial fractions
Since $1-\frac{2}{3} x-\frac{1}{3} x^{2}$ factors as $(1-x)\left(1+\frac{1}{3} x\right)$, we can write

$$
P(x)=\frac{1}{1-\frac{2}{3} x-\frac{1}{3} x^{2}}=\frac{A}{1-x}+\frac{B}{1+\frac{1}{3} x}
$$

To find A and B, just set x to some trial values:

$$
\begin{cases}1=A+B & (x=0) \\ -\frac{1}{4}=-\frac{1}{2} A+\frac{1}{2} B & (x=3)\end{cases}
$$

which we can solve to get

$$
P(x)=\frac{3 / 4}{1-x}+\frac{1 / 4}{1+\frac{1}{3} x}
$$

What can we do with this thing?

Approach \#2: Use partial fractions

Since $1-\frac{2}{3} x-\frac{1}{3} x^{2}$ factors as $(1-x)\left(1+\frac{1}{3} x\right)$, we can write

$$
P(x)=\frac{1}{1-\frac{2}{3} x-\frac{1}{3} x^{2}}=\frac{A}{1-x}+\frac{B}{1+\frac{1}{3} x} .
$$

To find A and B, just set x to some trial values:

$$
\begin{cases}1=A+B & (x=0) \\ -\frac{1}{4}=-\frac{1}{2} A+\frac{1}{2} B & (x=3)\end{cases}
$$

which we can solve to get

$$
P(x)=\frac{3 / 4}{1-x}+\frac{1 / 4}{1+\frac{1}{3} x}=\frac{3}{4} \sum_{n=0}^{\infty} x^{n}+\frac{1}{4} \sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)^{n} x^{n}
$$

What can we do with this thing?

Approach \#2: Use partial fractions
Since $1-\frac{2}{3} x-\frac{1}{3} x^{2}$ factors as $(1-x)\left(1+\frac{1}{3} x\right)$, we can write

$$
P(x)=\frac{1}{1-\frac{2}{3} x-\frac{1}{3} x^{2}}=\frac{A}{1-x}+\frac{B}{1+\frac{1}{3} x} .
$$

To find A and B, just set x to some trial values:

$$
\begin{cases}1=A+B & (x=0) \\ -\frac{1}{4}=-\frac{1}{2} A+\frac{1}{2} B & (x=3)\end{cases}
$$

which we can solve to get

$$
P(x)=\frac{3 / 4}{1-x}+\frac{1 / 4}{1+\frac{1}{3} x}=\frac{3}{4} \sum_{n=0}^{\infty} x^{n}+\frac{1}{4} \sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)^{n} x^{n}
$$

which means $p_{n}=\frac{3}{4}+\frac{1}{4} \cdot\left(-\frac{1}{3}\right)^{n}$, and $p_{21}=\frac{3}{4}-\frac{1}{3^{21}}$.

Exercises

1. Let $J(x)=\frac{x}{(1+x)(1-2 x)}$.
1.1 Find a recursive formula for $J_{n}=\left[x^{n}\right] J(x)$.
1.2 Write $J(x)$ as a sum of partial fractions and find the closed form of J_{n}.
2. Suppose you are flipping a fair coin over and over again.
2.1 Write a formula for $G(x)$ such that $\left[x^{n}\right] G(x)$ is the probability it will take n flips to see an outcome of tails.
2.2 What meaning does $G(x)^{2}$ have?
3. Let $F(x)=\frac{x}{1-x-x^{2}}$. Confirm that $\left[x^{n}\right] F(x)$ is the n-th Fibonacci number by:
3.1 Checking that the first few terms $F_{0}, F_{1}, F_{2}, \ldots$ are correct, and
3.2 Checking that the right recursive formula holds.

Solutions

1. $1.1 J_{n}=J_{n-1}+2 J_{n-2}$.
$1.2 J(x)=\frac{1 / 3}{1-2 x}-\frac{1 / 3}{1+x}$, and $J_{n}=\frac{2^{n}-(-1)^{n}}{3}$.
2. 2.1 $G(x)=\frac{1}{2} x+\frac{1}{4} x^{2}+\frac{1}{8} x^{3}+\cdots=\frac{x}{2-x}$.
$2.2\left[x^{n}\right] G(x)^{2}$ is the probability it will take n flips to see tails twice.
3. 3.1 We get $F_{0}=F(0)=0$. Shifting $F(x)$ over gives $\frac{F(x)-0}{x}=\frac{1}{1-x-x^{2}}$, which tells us $F_{1}=1$. Shifting $F(x)$ over again gives $\frac{F(x)-0-x}{x^{2}}=\frac{1+x}{1-x-x^{2}}$, which tells us $F_{2}=1$.
3.2 We can rewrite $F(x)=\frac{x}{1-x-x^{2}}$ as $F(x)=1+x F(x)+x^{2} F(x)$. Taking the coefficient of x^{n}, for $n \geq 1$, gives us

$$
\begin{aligned}
{\left[x^{n}\right] F(x) } & =\left[x^{n}\right](x F(x))+\left[x^{n}\right]\left(x^{2} F(x)\right) \\
& =\left[x^{n-1}\right] F(x)+\left[x^{n-2}\right] F(x)
\end{aligned}
$$

so the recursive formula $F_{n}=F_{n-1}+F_{n-2}$ holds.

[^0]: ${ }^{1}$ I slightly changed the numbers.

[^1]: ${ }^{1}$ I slightly changed the numbers.

