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Warm-up problems

1. Solve the recursion an+1 = 2an, a0 = 1 by using common
sense.

2. Solve the recursion bn+1 = 2bn + 1, b0 = 1 by using common
sense and trickery.

3. Solve the recursion cn+1 = 2cn + n, c0 = 1 by using common
sense, trickery, and persistence.

4. Solve the recursion dn+2 = dn + dn+1 + 2n, d0 = d1 = 1 by
using common sense, trickery, persistence, and a familiarity
with the Fibonacci numbers.



Warm-up solutions

1. an = 2n.

2. bn = 2n+1 − 1.

3. cn = 2n+1 − n − 1.

4. dn = 2n − Fn, where Fn is the nth Fibonacci number (with
F0 = 0 and F1 = 1).



Formal introduction to generating functions

If we have a sequence a0, a1, a2, a3, . . . that we like very much, we
make a generating function for it by computing the sum

A(x) =
∞∑
k=0

akx
k .

Often there is some nice expression for what this sum is. For
example, if the sequence is

(n
0

)
,
(n
1

)
,
(n
2

)
, . . . , we get the generating

function (1 + x)n.

Reasons to use generating functions:

I We get short descriptions of complicated sequences.

I We can manipulate sequences in useful ways with simple
algebra.
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Recurrences

If you lack common sense, trickery, and persistence, you can use
generating functions to solve recurrences. For example, take the
recurrence an+1 = 2an + 1 with a0 = 1.

an+1 = 2an + 1

∞∑
n=0

an+1x
n =

∞∑
n=0

2anx
n +

∞∑
n=0

xn

A(x)− a0
x

= 2A(x) +
1

1− x

A(x) =
1

(1− x)(1− 2x)
.

This splits up as A(x) = 2
1−2x −

1
1−x , so an = 2 · 2n − 1.
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Adding up Fibonacci numbers

The generating function for the Fibonacci numbers is
F (x) = x

1−x−x2 . Suppose we want to compute
Sn = F0 + F1 + F2 + · · ·+ Fn. How can we do this using
generating functions?

Let S(x) =
∑∞

n=0 Snx
n. Then:

S(x) =
∞∑
n=0

(
n∑

k=0

Fk

)
xn =

∑
0≤k≤n

Fkx
n

=
∞∑
k=0
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n=k

Fkx
n =
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k=0

Fkx
k

1− x

=
1

1− x

∞∑
k=0

Fkx
k =

1

1− x
F (x) =

x

(1− x)(1− x − x2)
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Adding up Fibonacci numbers

We can use “partial partial fractions” on S(x) = x
(1−x)(1−x−x2) .

Write:
x

(1− x)(1− x − x2)
=

A

1− x
+

Bx + C

1− x − x2
.

By setting x to a few trial values, we get:
0 = A + C (x = 0)

−1
2 = 1

2A− B + C (x = −1)

4 = 2A + 2B + 4C (x = 1
2)

We get A = −1, B = C = 1, so

S(x) =
x + 1

1− x − x2
− 1

1− x
= F (x) +

F (x)

x
− 1

1− x
.

Therefore Sn = Fn + Fn+1 − 1 = Fn+2 − 1.
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Convolutions, again

There is another reason why F (x)
1−x gave us the partial sums. We

can write this as:

(F0 + F1x + F2x
2 + F3x

3 + · · · )(1 + x + x2 + x3 + · · · ).

When we multiply this out, we get the following xn terms:

(Fnx
n) · 1 + (Fn−1x

n−1) · x + · · ·+ (F1x) · xn−1 + F0 · xn.

The total coefficient of xn is Fn + Fn−1 + · · ·+ F1 + F0.
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Exercises

1. Find the coefficient of x100 in (1+x)10

1−x .

2. Solve the recurrence an = a0 + a1 + · · ·+ an−1, with a0 = 1.

3. Compute the sum F0 + F2 + F4 + · · ·+ F2n−2 + F2n.



Exercises

1. The coefficient of x100 (and any xn for n ≥ 10) is 210 = 1024.

2. an = 2n−1 for n ≥ 1. The generating function (if you took
that approach) is

A(x) =
1− x

1− 2x
=

1/2

1− 2x
+

1

2
.

3. F0 + F2 + F4 + · · ·+ F2n−2 + F2n = F2n+1 − 1. In generating
function language:

F (x)

1− x2
=

F (x)

x
− 1

1− x2
.

This also implies that F1 + F3 + F5 + · · ·+ F2n−1 = F2n.



Complete sums of generating functions

1. How can we find
(n
0

)
+
(n
1

)
+ · · ·+

(n
n

)
using generating

functions?

The function f (x) = (1 + x)n is the g.f. for the finite sequence(n
0

)
,
(n
1

)
, . . . ,

(n
n

)
. We can find the sum by setting x = 1,

getting (1 + 1)n = 2n.

2. How can we find
(n
0

)
+
(n
2

)
+
(n
4

)
+ · · ·+

( n
n−(n mod 2)

)
using

generating functions?

Setting x = 1 converts
(n
k

)
xk into just

(n
k

)
for all k . But

setting x = −1 converts
(n
k

)
xk into

(n
k

)
for even k , and −

(n
k

)
for all k .

Therefore f (1)+f (−1)
2 will preserve the even terms and cancel

the odd terms, giving us (1+1)n+(1−1)n
2 = 2n−1.
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Another dice problem

If you roll 10 standard dice, what is the probability that the total is
divisible by 5?

We can solve this in a similar way. Let ω = e2πi/5: a complex
number satisfying ω5 = 1. Since x5 − 1 factors as
(x − 1)(x4 + x3 + x2 + x + 1), and ω 6= 1, we also have
1 + ω + ω2 + ω3 + ω4 = 0.

Let f (x) be a generating function. What is f (1)+f (ω)+···+f (ω4)
5 ?

Each xn becomes 1+ωn+ω2n+ω3n+ω4n

5 . If n is a multiple of 5, this
becomes 1+1+1+1+1

5 = 1. Otherwise, the numerator is a
permutation of 1 + ω + ω2 + ω3 + ω4 = 0.

If we do this for the probability generating function of rolling 10
dice, we get the answer we want.
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Another dice problem: Solution

The probability generating function of one die roll is
x+x2+x3+x4+x5+x6

6 . So the p.g.f. for rolling 10 dice is

f (x) =

(
x + x2 + x3 + x4 + x5 + x6

6

)10

.

Next, we compute f (1), f (ω), f (ω2), f (ω3), and f (ω4). The first
is easy: f (1) = 1.

We can simplify ω + ω2 + ω3 + ω4 + ω5 + ω6 to just
ω + ω2(1 + ω + ω2 + ω3 + ω4) = ω. So f (ω) =

(
ω
6

)10
= 1

610
. The

same thing happens for ω2, ω3, and ω4.

Therefore the probability we want is

1 + 1
610

+ 1
610

+ 1
610

+ 1
610

5
=

1

5
+

4

5 · 610
.
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Exercises

1. Compute
(99
0

)
+
(99
3

)
+
(99
6

)
+ · · ·+

(99
99

)
.

2. Compute
(99
1

)
+
(99
4

)
+
(99
7

)
+ · · ·+

(99
97

)
.

3. Using the g.f. 1
(1−x)2 = 1 + 2x + 3x2 + 4x3 + · · · , find the sum

∞∑
n=0

n

2n
.



Solutions

1. Let f (x) = (1 + x)99. Then we take
f (1)+f (e2πi/3)+f (e4πi/3)

3 = 299−2
3 .

2. Here, we do the same thing to f (x) = x2(1 + x)99, and get
299+1

3 .

3. Taking 1
(1− 1

2
)2

gives us 4, but this is actually the sum∑∞
n=0

n+1
2n . So we subtract off

∑∞
n=0

1
2n = 2, and get a total

of 2.



Bonus problem

Let Tn be the number of triangles you can make with integer sides
and perimeter n.

Find the generating function T (x) =
∑∞

n=0 Tnx
n.

This amounts to choosing a, b, c such that a ≤ b ≤ c and
c < a + b. But that is equivalent to choosing p = b − a,
q = c − b, and r = a + b − c such that p ≥ 0, q ≥ 0, and r > 0.
This yields the generating function

T (u, v ,w) =
1

1− u
· 1

1− v
· w

1− w
.

Given p, q, r , the perimeter is 2p + 4q + 3r =
2(b − a) + 4(c − b) + 3(a + b − c) = a + b + c. So we substitute
u = x2, v = x4, w = x3 to get

T (x) =
x3

(1− x2)(1− x3)(1− x4)
.
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