Congruence

Varsity Practice

Matthew Shi

1 Warm up

- 1. Segments AB and CD lie on the same line and share same midpoint. Point P is chosen so that APB is isosceles with the base AB. Prove that CPD is also isosceles.
- 2. (HMMT 2018) How many noncongruent triangles are there with one side of length 20, one side of length 17, and one 60° angle?
- 3. (JBMO 2001 2) Let ABC be a triangle with $\angle C = 90^{\circ}$ and $CA \neq CB$. Let CL be an interior angle bisector. Show that for $X \neq C$ on the line CL we have $\angle XAC \neq \angle XBC$.
- 4. On the median BM of a triangle ABC point O is marked so that $\angle OCA = \angle OAC$. Prove that $\triangle ABC$ is isosceles.
- 5. (SMT 2018 Geo 3) Let ABC be a triangle and D be a point such that A and D are on opposite sides of BC. Given that $\angle ACD = 75^{\circ}, AC = 2, BD = \sqrt{6}$, and AD is an angle bisector of both $\triangle ABC$ and $\triangle BCD$, find the area of quadrilateral ABDC.
- 6. (AIME I 2003) Triangle ABC is isosceles with AC = BC and $\angle ACB = 106^{\circ}$. Point M is in the interior of the triangle so that $\angle MAC = 7^{\circ}$ and $\angle MCA = 23^{\circ}$. Find $\angle CMB$.

2 Problems

- 1. (SMT 2012) Let ABCD be a rectangle with area 2012. There exist points E on AB and F on CD such that DE = EF = FB. Diagonal AC intersects DE at X and EF at Y. Compute the area of EXY.
- 2. (SMT 2012) In quadrilateral ABCD, $\angle ABD = \angle BCD$ and $\angle ADB = \angle ABD + \angle BDC$. If AB = 8 and AD = 5, find BC.
- 3. (SMT 2018) Let ABC be a right triangle with $\angle ACB = 90^{\circ}$, BC = 16, and AC = 12. Let the angle bisectors of $\angle BAC$ and $\angle ABC$ intersect BC and AC at D and E respectively. Let AD and BE intersect at I, and let the circle centered at I passing through C intersect AB at P and Q such that AQ < AP. Compute the area of quadrilateral DPQE.
- 4. (AIME I 2003) In convex quadrilateral ABCD, $\angle A \cong \angle C$, AB = CD = 180, and $AD \neq BC$. The perimeter of ABCD is 640. Find $\cos A$.