Congruence

Varsity Practice

Matthew Shi

1 Warm up

1. Segments $A B$ and $C D$ lie on the same line and share same midpoint. Point P is chosen so that $A P B$ is isosceles with the base $A B$. Prove that $C P D$ is also isosceles.
2. (HMMT 2018) How many noncongruent triangles are there with one side of length 20 , one side of length 17 , and one 60° angle?
3. (JBMO 2001 2) Let $A B C$ be a triangle with $\angle C=90^{\circ}$ and $C A \neq C B$. Let $C L$ be an interior angle bisector. Show that for $X \neq C$ on the line $C L$ we have $\angle X A C \neq \angle X B C$.
4. On the median $B M$ of a triangle $A B C$ point O is marked so that $\angle O C A=\angle O A C$. Prove that $\triangle A B C$ is isosceles.
5. (SMT 2018 Geo 3) Let $A B C$ be a triangle and D be a point such that A and D are on opposite sides of $B C$. Given that $\angle A C D=75^{\circ}, A C=2, B D=\sqrt{6}$, and $A D$ is an angle bisector of both $\triangle A B C$ and $\triangle B C D$, find the area of quadrilateral $A B D C$.
6. (AIME I 2003) Triangle $A B C$ is isosceles with $A C=B C$ and $\angle A C B=106^{\circ}$. Point M is in the interior of the triangle so that $\angle M A C=7^{\circ}$ and $\angle M C A=23^{\circ}$. Find $\angle C M B$.

2 Problems

1. (SMT 2012) Let $A B C D$ be a rectangle with area 2012. There exist points E on $A B$ and F on $C D$ such that $D E=E F=F B$. Diagonal $A C$ intersects $D E$ at X and $E F$ at Y. Compute the area of $E X Y$.
2. (SMT 2012) In quadrilateral $A B C D, \angle A B D=\angle B C D$ and $\angle A D B=\angle A B D+\angle B D C$. If $A B=8$ and $A D=5$, find $B C$.
3. (SMT 2018) Let $A B C$ be a right triangle with $\angle A C B=90^{\circ}, B C=16$, and $A C=12$. Let the angle bisectors of $\angle B A C$ and $\angle A B C$ intersect $B C$ and $A C$ at D and E respectively. Let $A D$ and $B E$ intersect at I, and let the circle centered at I passing through C intersect $A B$ at P and Q such that $A Q<A P$. Compute the area of quadrilateral $D P Q E$.
4. (AIME I 2003) In convex quadrilateral $A B C D, \angle A \cong \angle C, A B=C D=180$, and $A D \neq B C$. The perimeter of $A B C D$ is 640 . Find $\cos A$.
