Proportionality and Area Chasing

Tudor Dimitre-Popescu

JV Practice (Proportionality)

Tudor Dimitre-Popescu

1 Intercept Theorem

1.1 The theorem

Let two non parallel l_{1}, l_{2} intersect at point X. Let two lines intersect l_{1} at A, B and l_{2} at C, D in this order. Then these two lines are parallel if and only if $\frac{X A}{X B}=\frac{X C}{X D}$.

1.2

Let $A B C D$ be a trapezoid and $A C \cap B D=\{O\}$. If $A C=20$ and $\frac{D O}{B O}=\frac{3}{7}$, compute the lengths of $A O$ and $O C$.

1.3

Let l_{1}, l_{2}, l_{3} be three lines that meet at O. Let $A, A^{\prime} \in l_{1}, B, B^{\prime} \in l_{2}, C, C^{\prime} \in l_{3}$ such that $A B \| A^{\prime} B^{\prime}$ and $B C \| B^{\prime} C^{\prime}$. Prove that $A C \| A^{\prime} C^{\prime}$.

1.4

In $\triangle A B C$ and $E, H \in(A B), F \in A C, G \in B C$ such that $E F\|B C, F G\| A B, G H \| A C$. Prove $A E \cdot A H=B E \cdot B H$.

1.5

Let $A B C D$ be a rectangle. Take $E \in(A B), G \in(A D$ and construct F such that $A B C D$ and rectangle $A E F G$ have equal area. Prove that $D E \| B G$.

2 The Angle Bisector Theorem

2.1 The theorem

Consider $\triangle A B C$. Let $D \in(B C)$. We have that $A D$ is the angle bisector of $B A C \Longleftrightarrow \frac{A B}{A C}=\frac{B D}{D C}$. Prove the generalization: if $D \in B C$, then $\frac{B D}{D C}=\frac{A B}{A C} \sin (D A B)$. Furthermore, if $A D$ is the exterior bisector of $B A C, D \in B C$, then $\frac{A B}{A C}=\frac{B D}{C D}$.

2.2

Consider the rectangle $A B C D$. The angle bisectors of $B A C$ and $D A C$ intersect lines $B C$ and $C D$ in M, N respectively. Prove that $\frac{M B}{M C}+\frac{N D}{N C}>1$.

2.3

It's bash time! Prove that if $A D$ is the bisector, $a=B C, b=A C, c=B C$, then $A D=\frac{2 b c}{b+c} \cos \left(\frac{A}{2}\right)$.

2.4

Let $\triangle A B C$ be a triangle with $A B=20, B C=30$, and let $B D$ be the angle bisector of $\angle A B C, D \in$ $(A C)$. If $E \in(B C), F \in A C$ such that $D E\|A B, E F\| B D$ and $A D-C F=1$, find the length of $A C$.

2.5

Let $A M$ be a median in $\triangle A B C$. The bisector of $A M B$ intersects $A B$ in M, while the bisector of $A M C$ intersects $A C$ in P. Prove that $N P \| B C$.

Varsity Practice (Area Chasing)

Gunmay Handa

1. (2014 AMC 10A) A regular hexagon has side length 6 . Congruent arcs with radius 3 are drawn with the center at each of the vertices, creating circular sectors as shown. The region inside the hexagon but outside the sectors is shaded as shown What is the area of the shaded region?

2. (CMIMC 2016) Let $A B C D$ be an isosceles trapezoid with $A D=B C=15$ such that the distance between its bases $A B$ and $C D$ is 7 . Suppose further that the circles with diameters $\overline{A D}$ and $\overline{B C}$ are tangent to each other. What is the area of the trapezoid?
3. (2014 AMC 10A) In rectangle $A B C D, A B=1, B C=2$, and points E, F, and G are midpoints of $\overline{B C}, \overline{C D}$, and $\overline{A D}$, respectively. Point H is the midpoint of $\overline{G E}$. What is the area of the shaded region?

4. (CMIMC 2019) Let $M A T H$ be a trapezoid with $M A=A T=T H=5$ and $M H=11$. Point S is the orthocenter of $\triangle A T H$. Compute the area of quadrilateral $M A S H$.
5. (CMIMC 2018) Let $A B C$ be a triangle with side lengths $5,4 \sqrt{2}$, and 7 . What is the area of the triangle with side lengths $\sin A, \sin B$, and $\sin C$?
6. (NIMO 12.2) Let $A B C$ be an equilateral triangle. Denote by D the midpoint of $\overline{B C}$, and denote the circle with diameter $\overline{A D}$ by Ω. If the region inside Ω and outside $\triangle A B C$ has area $800 \pi-600 \sqrt{3}$, find the area of $\triangle A B C$.
7. (BMT 2017) Let $A B C$ be a triangle with $A B=3, B C=5, A C=7$, and let P be a point in its interior. If G_{A}, G_{B}, G_{C} are the centroids of $\triangle P B C, \triangle P A C, \triangle P A B$, respectively, find the maximum possible area of $\triangle G_{A} G_{B} G_{C}$.
8. (2017 AIME I)* What is the area of the smallest equilateral triangle with one vertex on each of the sides of the right triangle with side lengths $2 \sqrt{3}, 5$, and $\sqrt{37}$, as shown?

9. (CMIMC 2019)* Suppose $A B C$ is a triangle, and define B_{1} and C_{1} such that $\triangle A B_{1} C$ and $\triangle A C_{1} B$ are isosceles right triangles on the exterior of $\triangle A B C$ with right angles at B_{1} and C_{1}, respectively. Let M be the midpoint of $\overline{B_{1} C_{1}}$; if $B_{1} C_{1}=12, B M=7$ and $C M=11$, what is the area of $\triangle A B C$?
10. (2012 AIME I)* Three concentric circles have radii 3, 4, and 5. An equilateral triangle with one vertex on each circle has side length s. What is the largest possible area of the triangle?
