Geometry	Misha Lavrov	
Western PA ARML Practice	The Area Method	

1 Warm-up problems

1. In square $A B C D$, line segments are drawn from A to the midpoint of $B C$, from B to the midpoint of $C D$, from C to the midpoint of $D A$, and from D to the midpoint of $A B$. The four segments form a smaller square within square $A B C D$. If $A B=1$, what is the area of the smaller square?
2. In the diagram below, what is the ratio of the areas of the two shaded triangles?

3. In the diagram below, what is the ratio of the shaded area to the area of one of the five congruent triangles?

2 The area method

The fundamental tools of the area method are the following two lemmas:
Intersection Lemma. If segments $A B$ and $C D$ intersect at X, then $\frac{A X}{B X}=\frac{S_{A C D}}{S_{B C D}}$.
Vertex Sliding Lemma. If point C is on segment $P Q$, then $S_{A B C}=\frac{P C}{P Q} \cdot S_{A B Q}+\frac{C Q}{P Q} \cdot S_{A B P}$.
These are at their strongest when we allow areas and ratios to have signs, by the following rules:

- $\frac{A B}{C D}$ is positive if $A B$ and $C D$ are pointing in the same direction, and negative otherwise.
- $S_{A B C}$ is positive if A, B, C are in clockwise order around $\triangle A B C$, and negative otherwise.

If this seems overwhelming, then you can ignore signs (as long as $A B$ does not intersect $P Q$ in the second lemma), getting out slightly less information.

1. (ARML 1996) In $\triangle A B C, A B=A C=115, A D=38$, and $C F=77$. Compute $\frac{S_{C E F}}{S_{D B E}}$.

2. (ARML 2000) In rectangle $A B C D, G$ and H are trisection points of $A D$, and E and F are trisection points of $B C$. If $A B=360$ and $B C=450$, compute the area of $P Q R S$.

3. (ARML 2012) Given noncollinear points A, B, C, segment $A B$ is trisected by points D and E, and F is the midpoint of segment $A C . D F$ and $B F$ intersect $C E$ at G and H, respectively. If $S_{E D G}=18$, compute $S_{F G H}$.

4. (ARML 2015) In trapezoid $A B C D$ with bases $A B$ and $C D, A B=14$ and $C D=6$. Points E and F lie on $A B$ such that $A D \| C E$ and $B C \| D F$. Segments $D F$ and $C E$ intersect at G, and $A G$ intersects $B C$ at H. Compute $\frac{S_{C G H}}{S_{A B C D}}$.

