Geometry	Misha Lavrov
Western PA ARML Practice	Triangle Geometry

1 ARML problems

1. (ARML 1980) In $\triangle A B C$, the angle bisector $A I$ divides the median $B M$ into two segments of length 200 and 300 , and $A I$ divides $B C$ into two segments of length 660 and x. Find the largest possible value of x.
2. (ARML 1992) In $\triangle A B C$, points D and E are on $A B$ and $A C$, and the angle bisector $A T$ intersects $D E$ at F. If $A D=1, D B=3, A E=2$, and $E C=4$, compute the ratio $A F: A T$.

3. (ARML 1992) Points P, Q, and R are the midpoints of the medians of $\triangle A B C$. If the area of $\triangle A B C$ is 1024 , compute the area of $\triangle P Q R$.

2 Properties of angle bisectors and incircles

1. Prove the Angle Bisector Theorem: if $A D$ bisects $\angle A$, then $A B: A C=B D: C D$.
2. In $\triangle A B C$, the altitude $A P$ and median $A Q$ trisect $\angle A$. Find the angles of $\triangle A B C$.
3. In the convex quadrilateral $A B C D$, the inradii of $\triangle A B C, \triangle B C D, \triangle C D A$, and $\triangle D A B$ are equal. Prove that $A C=B D$.

3 Properties of medians

1. In $\triangle A B C$, let the medians $A M$ and $B N$ intersect at X. Find the ratio $A X: X M$.
2. In $\triangle A B C$, let the medians $A M$ and $B N$ intersect at X, and let $C X$ meet $A B$ at P. Prove that $A P=B P$, which shows that the three medians of $\triangle A B C$ meet at a common point.
3. Show that if the medians of $\triangle A B C$ intersect at X, then the areas of $\triangle A B X, \triangle A C X$, and $\triangle B C X$ are equal.
4. The medians of a triangle have lengths 9,12 , and 15 . Find the area.
