Geometry Coordinate Geometry

Warm-up

1. (ARML 2007) In rectangle $A B C D, M$ is the midpoint of $A B, A C$ and $D M$ intersect at E, $C E=10$, and $E M=4$. Find the area of rectangle $A B C D$.

Problems

1. (ARML 1993) Triangle $A O B$ is positioned in the first quadrant with $O=(0,0)$ and B above and to the right of A. The slope of $O A$ is 1 , the slope of $O B$ is 8 , and the slope of $A B$ is m. If the points A and B have x-coordinates a and b, respectively, compute $\frac{b}{a}$ in terms of m.
2. (ARML 1993) Square $A B C D$ is positioned in the first quadrant with A on the y-axis, B on the x-axis, and $C=(13,8)$. Compute the area of the square.
3. (a) Find the center of the circle that passes through the points $(3,0),(5,12)$, and $(11,11)$.
(b) Find the equation of the line tangent to this circle at $(5,12)$.
(c) Another circle with center at $(7,5)$ is tangent to the first circle. Find the equation of the second circle, in the form $(x-a)^{2}+(y-b)^{2}=c$.
4. (AIME 2000) Let u and v be integers satisfying $0<v<u$. Let $A=(u, v)$, let B be the reflection of A across the line $y=x$, let C be the reflection of B across the y-axis, let D be the reflection of C across the x-axis, and let E be the reflection of D across the y-axis. The area of pentagon $A B C D E$ is 451 . Find $u+v$.
5. (AIME 2001) Let $R=(8,6)$. The lines whose equations are $8 y=15 x$ and $10 y=3 x$ contain points P and Q, respectively, such that R is the midpoint of $P Q$. The length of $P Q$ equals $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.
6. Diameters $A B$ and $C D$ of circle S are perpendicular; E is another point on circle S. Chord $E A$ intersects diameter $C D$ at point K and chord $E C$ intersects diameter $A B$ at point L. If
$C K: K D=2: 1$, find $A L: L B$.
7. (ARML 1988 Power Round)
(a) A sequence $\left(x_{n}\right)$ is defined as follows: $x_{0}=2$, and for all $n \geq 1,\left(x_{n}, 0\right)$ lies on the line through $(0,4)$ and $\left(x_{n-1}, 2\right)$. Derive a formula for x_{n} in terms of x_{n-1}.
(b) A sequence $\left(y_{n}\right)$ is defined as follows: $y_{0}=0$, and for all $n \geq 1$, draw a square of side length 2 with its bottom left corner at $\left(y_{n-1}, 0\right)$ and its bottom side on the x-axis. The point $\left(y_{n}, 0\right)$ lies on the line through $(0,4)$ and the top right corner of the square. Derive a formula for y_{n} in terms of y_{n-1}.
(c) A sequence $\left(z_{n}\right)$ is defined as follows: $z_{0}=0$, and for all $n \geq 1$, draw a circle of diameter 2 tangent to the x-axis and tangent to the line through $(0,4)$ and $\left(z_{n-1}, 0\right)$ in such a way that its center lies to the right of that line. The line through $(0,4)$ and $\left(z_{n}, 0\right)$ is the other tangent to the same circle. Derive a formula for z_{n} in terms of z_{n-1}.
(d) Express $\left(x_{n}\right),\left(y_{n}\right)$, and $\left(z_{n}\right)$ explicitly as functions of n.
8. Prove that the area of a triangle with coordinates $(a, b),(c, d)$, and (e, f) is given by

$$
\frac{1}{2}\left|\operatorname{det}\left(\begin{array}{lll}
a & b & 1 \\
c & d & 1 \\
e & f & 1
\end{array}\right)\right|=\frac{1}{2}|a d+b e+c f-a f-b c-d e| .
$$

9. (AIME 2005) The points $A=(p, q), B=(12,19)$, and $C=(23,20)$ form a triangle of area 70. The median from A to side $B C$ has slope -5 . Find the largest possible value of $p+q$.
10. (a) Prove that the medians of a triangle can be translated (without rotating the line segments) to form the sides of a new triangle.
(b) The medians of $\triangle A B C$ are translated to form the sides of $\triangle D E F$, and the medians of $\triangle D E F$ are translated to form the sides of $\triangle G H I$. Prove that $\triangle A B C$ and $\triangle G H I$ are similar, and compute the coefficient of similarity.
11. Find the equation of the line that bisects the angle formed in the first quadrant by the x-axis and the line $y=m x$.
12. (INMO 2009) Let P be a point inside $\triangle A B C$ such that $\angle B P C=90^{\circ}$ and $\angle B A P=\angle B C P$. Let M, N be the midpoints of $A C, B C$ respectively. Suppose $B P=2 P M$. Prove that A, P, and N are collinear.
