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Warm-up problems

1 A circular arc with radius 1 inch is rocking back and forth on a
flat table. Describe the path traced out by the tip.

2 A circle of radius 4 is externally tangent to a circle of radius 9.
A line is tangent to both circles and touches them at points A
and B . What is the length of AB?
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Warm-up solutions
1 A horizontal line 1 inch above the table.

2 Let X and Y be the centers of the circle. Lift AB to XZ as in
the diagram below.

A B

X

Y

Z

Then XY = 4+9= 13, YZ = 9−4= 5, and XZ =AB . Because
XZ 2+YZ 2 =XY 2, we get XZ =AB = 12.
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Many tangent circles
Shown below is the densest possible packing of 13 circles into a
square. If the radius of a circle is 1, find the side length of the
square.
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Many tangent circles: Solution
ABC is equilateral with side length 2, so C is

p
3 units above A.

ACD is isosceles, so D is
p
3 units above C , and finally E is 2 units

above D. So AE = 2+2
p
3, and the square has side 4+2

p
3.

A B

C

D

E
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More tangent circles
For a real challenge, try eleven circles. Yes, two of those are loose.
The solution is approximately but not quite 7; you can use this to
check your answer.
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Facts about angles

Definition. We say that the measure of an arc of the circle is the
measure of the angle formed by the radii to its endpoints.

A

B

C
A1

A2

B C1

C2

Theorem 1. If A, B , and C are points on a circle, ∠ABC = 1
2
ÙAC .

Theorem 2. If lines from point B intersect a circle at A1,A2 and
C1,C2, ∠A1BC1 =∠A2BC2 = 1

2

( ÚA2C2− ÚA1C1

)
.
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Angles inside circles: problems
1 A hexagon ABCDEF (not necessarily regular) is inscribed in

a circle. Prove that ∠A+∠C +∠E =∠B +∠D +∠F .

2 In the diagram below, PA and PB are tangent to the circle
with center O. A third tangent line is then drawn,
interesecting PA and PB at X and Y . Prove that the measure
of ∠XOY does not change if this tangent line is moved.

P

A

B

O
Y

X
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Solutions

1 By Theorem 1, ∠A= 1
2

(ÙBC +ÙCD +ÙDE + ØEF
)
and similarly for

other angles. If we add up such equations for ∠A+∠C +∠E ,
we get ÙAB +ÙBC +ÙCD +ÙDE + ØEF +ÙAF = 360◦, and the same
for ∠B +∠D +∠F .

2 Let Z be the point at which XY is tangent to the circle. Then
4XAO and 4XZO are congruent, because AO =ZO,
XO =XO, and ∠XAO =∠XZO = 90◦. ∠ZOX =∠XOA, and
both are equal to 1

2∠ZOA. Similarly, ∠ZOY =∠YOB , and
both are equal to 1

2∠ZOB . Adding these together, we get
∠XOY = 1

2∠AOB , which does not depend on the position of
the tangent line.
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Power of a point

Theorem 3. Two lines through a point P intersect a circle at points
X1,Y1 and X2,Y2 respectively. Then PX1 ·PY1 =PX2 ·PY2.

P
X1 Y1

X2

Y2

P

X1

Y1

X2 Y2

One way to think about this is that the value PX ·PY you get by
choosing a line through P does not depend on the choice of line,
only on P itself. This value is called the “power of P”.
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Power of a point: problems

1 Assume P is inside the circle for concreteness. Prove that
4PX1X2 and 4PY2Y1 are similar. Deduce Theorem 3.

2 Two circles (not necessarily of the same radius) intersect at
points A and B . Prove that P is a point on AB if and only if
the power of P is the same with respect to both circles.

3 Three circles (not necessarily of the same radius) intersect at a
total of six points. For each pair of circles, a line is drawn
through the two points where they intersect. Prove that the
three lines drawn meet at a common point, or are parallel.
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Power of a point: solutions
1 ∠X1PX2 and ∠Y1PY2 are vertical, and therefore equal.

∠PX1X2 and ∠PY2Y1 both intercept arc ÛX2Y1, so they are
both equal by Theorem 1. So the triangles are similar.

Therefore PX1
PX2

= PY2
PY1

, and we get Theorem 3 by
cross-multiplying.

2 If P is on AB , the line PA intersects either circle at A and B ,
so the power of P is PA ·PB .

But if P is not on AB , the line PA does not pass through B : it
intersects one circle at X and another at Y , so the power of P
is PA ·PX for one circle and PA ·PY for the other.

3 If any two lines intersect, the point of intersection will have
the same power for all three circles, so it lies on all three lines
by the previous problem.
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