Similar Triangles

JV Practice 2/9/20

Lucas Jia / Matthew Shi

1 Warm-up Questions

1. (AHSME 1995) In $\triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}, \mathrm{AC}=6$ and $\mathrm{BC}=8$. Points D and E are on AB and BC , respectively, and $\angle \mathrm{BED}=90^{\circ}$. If $\mathrm{DE}=4$, what is the length of BD ?
2. $\triangle \mathrm{ABC}$ has $\mathrm{AB}=12, \mathrm{AC}=13$, and $\mathrm{BC}=15$. Points X and Y are placed on AB and AC respectively such that $\angle \mathrm{AXY}=\angle \mathrm{CB}$. If $\mathrm{XY}=6$, what is $\mathrm{AX}+\mathrm{AY}$?
3. Review Law of Sines and Angle Bisector Theorem.

2 Similar Triangles, Adding Lines

1. (BmMT 2019) In triangle $\mathrm{ABC}, \angle \mathrm{ABC}=3 \angle \mathrm{ACB}$. If $\mathrm{AB}=4$ and $\mathrm{AC}=5$, compute the length of BC.

2. (Math League HS 1981-1982). The area of square ABCD is 1 . As illustrated at the right, diagonal AC is extended its own length to point E . How long is BE ?

3 Sample Problems

1. (AMC 10A 2002). Points A, B, C, D, E, and F lie, in that order, on AF, dividing it into five segments, each of length 1. Point G is not on line AF. Point H lies on GD, and point J lies on GF. The line segments HC, JE, and AG are parallel. Find HC/JE.

4 Problems

1. (2012 AMC 10A) Externally tangent circles with centers at points A and B have radii of lengths 5 and 3 , respectively. A line externally tangent to both circles intersects ray $A B$ at point C. What is $B C$?
2. (AMC 10A 2009) Rectangle ABCD has $\mathrm{AB}=4$ and $\mathrm{BC}=3$. Segment EF is constructed through B so that EF â DB, and A and C lie on DE and DF, respectively. What is EF?
3. (AHSME 1986) In $\triangle \mathrm{ABC}, \mathrm{AB}=8, \mathrm{BC}=7, \mathrm{CA}=6$ and side BC is extended, as shown in the figure, to a point P so that $\triangle \mathrm{PAB}$ is similar to $\triangle \mathrm{PCA}$. What is the length of PC ?

4. (BMmT 2019) June is making a pumpkin pie, which takes the shape of a truncated cone, as shown below. The pie tin is 18 inches wide at the top, 16 inches wide at the bottom, and 1 inch high. How many cubic inches of pumpkin filling are needed to fill the pie?

5. (AHSME 1990) Let ABCD be a parallelogram with $\angle \mathrm{ABC}=120^{\circ}, \mathrm{AB}=16$ and $\mathrm{BC}=10$. Extend CD through D to E so that $\mathrm{DE}=4$. If BE intersects AD at F , then FD is closest to what integer?

6. On square ABCD , points E and F are constructed on CD and AB respectively such that DE $=\mathrm{EC}$ and $\mathrm{AF}=2 \mathrm{FB}$. Segment DF intersects AE and AC at P and Q respectively. If $\mathrm{AB}=$ 3 , what is PQ ?
