Cyclic Quadrilaterals

Varsity Practice 1/26/20

Anish Sevekari

1 Warm-Up Problems

1. Let $\square A B C D$ be a cyclic quadilateral such that $A B=6, B C=4, C D=2$ and $A D=3$. Let $A C=4$ then compute length of $B D$.
2. Let $\triangle A B C$ be such that $A B=4$. Let circle tangent to $\overline{A C}$ at C and passing through B intersect $\overline{A B}$ at a point P such that $P B=5$. Compute $A C$.
3. (PUMaC 2016 A5) Let D, E, F respectively be the feel of the altitudes from A, B and C of acute triangle $\triangle A B C$ such that $A F=28, F B=35$ and $B D=45$. Let P be the point on segment $B E$ such that $A P=42$. Find the length of $C P$.
4. (IMO Shortlist 2017 G7) A convex quadrilateral $\square A B C D$ has an inscribed circle with center I. Let I_{a}, I_{b}, I_{c} and I_{d} be the incenters of the triangles $D A B, A B C, B C D, C D A$ respectively. Suppose that the common external tangents of the circles $A I_{b} I_{d}$ and $C I_{b} I_{d}$ meet at X, and the common external tangents of the circles $B I_{a} I_{c}$ and $D I_{a} I_{c}$ meet at Y. Prove that $\angle X I Y=90^{\circ}$.

2 Problem Set

1. (AIME 2 2015) The circumcircle of acute $\triangle A B C$ has center O. The line passing though point O perpendicular to $\overline{O B}$ intersects lines $A B$ and line $B C$ at P and Q, respectively. Also $A B=5, B C=4, B Q=4.5$ and $B P=\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.
2. (AIME 2, 2010) In triangle $\triangle A B C, A C=13, B C=14$ and $A B=15$. Points M and D lie on $A C$ wtih $A M=M C$ and $\angle A B D=\angle D B C$. Points N and E lie on $A B$ with $A N=N B$ and $\angle A C E=\angle E C B$. Let P be the point, other than A, of intersection of the circumcircles of $\triangle A M N$ and $\triangle A D E$. Ray $A P$ meets $B C$ at Q. The ratio $B Q / C Q$ can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m-n$.
3. (PUMaC 2016 A8) Let $\triangle A B C$ have side lengths $A B=4, B C=6, C A=5$. Let M be the midpoint of $B C$ and let P be the point on the circumcentre of $\triangle A B C$ such that $\angle M P A=90^{\circ}$. Let D be the foot of the altitude from B to $A C$, and let E be the foot of the altitude from C to $A B$. Let $P D$ and $P E$ intersect line $B C$ at X and Y respectively. Compute the square of the area of $\triangle A X Y$.
4. (IMO shortlist $2016 \mathrm{G4}$) Let $\triangle A B C$ be a triangle with $A B=A C \neq B C$ and let I be its incenter. The line $B I$ meets $A C$ at D, and the line through D perpendicular to $A C$ meet $A I$ at E. Prove that the reflection of I in $A C$ lies on the circumcircle of triangle $B D E$.
