Number Theory and Modular Arithmetic
 JV Practice 2/7/21
 Zoe Wellner

1 Background

We consider a and b congruent modulo n, written as $a \equiv b \bmod n$ when b is the reminder of a divided by n. In other words, n divides $a-b$. Modulo has the following basic properties given $a \equiv b \bmod n$ and $c \equiv d(\bmod n)$:

- $a+c \equiv b+d(\bmod n)$
- $a-c \equiv b-d(\bmod n)$
- $a \cdot c \equiv b \cdot d(\bmod n)$

2 Warmup

1. Do the following computations in modular arithmetic:
(a) $4-20 \bmod 5$
(b) $5 \cdot 11 \bmod 12$
(c) $2^{5} \bmod 7$
(d) $11^{378} \bmod 10$
2. For any non-negative integer n, the factorial $n!=n \cdot(n-1) \ldots 3 \cdot 2 \cdot 1$. What are the following quantities? Is there a similarity?
(a) $6!\bmod 7$
(b) $4!\bmod 5$
(c) $12!\bmod 13$
3. A number is divisible by 4 if and only if its last two digits are divisible by 4 . Why?

3 Problems

1. Find the perfect squares in modulo 9
2. Find x such that $2 x \equiv 23(\bmod 39)$
3. Given that $5 x \equiv 6(\bmod 8)$ find x
4. Is there an x such that $6 x \equiv 22(\bmod 39)$?
5. Show that $7 \mid\left(4^{2^{n}}+2^{2^{n}}+1\right)$ for any natural number n
6. Find the remainder when

$$
\sum_{n=0}^{100} 10^{n}
$$

is divided by 9
7. What is the largest positive integer n such that $n^{3}+100$ is divisible by $n+10$

4 Challenge Problems

1. Show that if p is a prime, then $a^{p-1} \equiv 1 \bmod p$
2. Show that $(p-1)!\equiv-1 \bmod p$ whenever p is prime
