Number Theory and Modular Arithmetic

JV Practice 2/7/21 Zoe Wellner

1 Background

We consider a and b congruent modulo n, written as $a \equiv b \mod n$ when b is the reminder of a divided by n. In other words, n divides a - b. Modulo has the following basic properties given $a \equiv b \mod n$ and $c \equiv d \pmod{n}$:

- $a + c \equiv b + d \pmod{n}$
- $a c \equiv b d \pmod{n}$
- $a \cdot c \equiv b \cdot d \pmod{n}$

2 Warmup

- 1. Do the following computations in modular arithmetic:
 - (a) $4 20 \mod 5$
 - (b) $5 \cdot 11 \mod 12$
 - (c) $2^5 \mod 7$
 - (d) $11^{378} \mod 10$
- 2. For any non-negative integer n, the factorial $n! = n \cdot (n-1) \dots 3 \cdot 2 \cdot 1$. What are the following quantities? Is there a similarity?
 - (a) $6! \mod 7$
 - (b) $4! \mod 5$
 - (c) $12! \mod 13$

3. A number is divisible by 4 if and only if its last two digits are divisible by 4. Why?

3 Problems

- 1. Find the perfect squares in modulo 9
- 2. Find x such that $2x \equiv 23 \pmod{39}$
- 3. Given that $5x \equiv 6 \pmod{8}$ find x
- 4. Is there an x such that $6x \equiv 22 \pmod{39}$?
- 5. Show that $7|(4^{2^n} + 2^{2^n} + 1)$ for any natural number n

6. Find the remainder when

$$\sum_{n=0}^{100} 10^n$$

is divided by 9

7. What is the largest positive integer n such that $n^3 + 100$ is divisible by n + 10

4 Challenge Problems

- 1. Show that if p is a prime, then $a^{p-1} \equiv 1 \mod p$
- 2. Show that $(p-1)! \equiv -1 \mod p$ whenever p is prime