Number Theory and the Euclidean Algorithm

JV Practice 2/14/21
Zoe Wellner

1 Background and Review

Recall from last time, we consider a and b congruent modulo n, written as $a \equiv b \bmod n$ when b is the reminder of a divided by n. In other words, n divides $a-b$. Modulo has the following basic properties given $a \equiv b \bmod n$ and $c \equiv d(\bmod n)$:

- $a+c \equiv b+d(\bmod n)$
- $a-c \equiv b-d(\bmod n)$
- $a \cdot c \equiv b \cdot d(\bmod n)$

Recall that we don't always have a multiplicative inverse (the ability to divide). For a, a^{-1} will be such that $a a^{-1}=1(\bmod n)$. We also saw that a^{-1} exists if and only if a and n are coprime, so $\operatorname{gcd}(a, n)=1$

2 Warmup

1. (Challenge problem from last time that we will cover at the beginning of today.) Show that $(p-1)!\equiv-1(\bmod p)$ whenever p is prime
2. Find the greatest common divisor of 102 and 38 , i.e. calculate $\operatorname{gcd}(102,38)$
3. Find the integers x, y such that $102 x+38 y=\operatorname{gcd}(102,38)$
4. Find the greatest common divisor for $n!+1(n+1)!+1$ in terms of n

3 Problems

1. Find the greatest common divisor of 7544 and 115 , i.e. calculate $\operatorname{gcd}(7544,115)$
2. Find the integers x, y such that $7544 x+115 y=\operatorname{gcd}(7544,115)$
3. Prove that $27 x+4$ and $18 x+3$ are coprime for any integer x
4. The least common multiple of a and b is 12 and the least common multiple of b and c is 15 . What is the smallest possible value for the least common multiple of a and c ?
5. What is the ratios of the least common multiple of 180 and 594 to the greatest common factor of 180 and 594 ?
6. Let S be the set of all positive integers less than 1000, such that when written in binary has, at most two 1s. If a number is chosen from S uniformly at random, what is the probability that it is divisible by 9 ?
7. Consider the sequence $x, x^{2}, x^{3}, \ldots(\bmod 13)$, this is always periodic. What are all possible periods (length at which it repeats) for this sequence?
