Area and beyond - part 2

1. Warm-Up - Area and beyond - part 1, Problems Section

2. Problems

1. The polygon is circumscribed about a circle of radius r. Prove that its area is $s r$, where s is the semi-perimeter of this polygon.
2. Express the area of trapezoid in terms of it's bases and a height. Prove the correctness of your formula.
3. Prove that medians split a triangle into six triangles with equal areas.
4. Let E and F be the midpoints of the sides $B C$ and $A D$ of the parallelogram $A B C D$. Find the area of the quadrilateral formed by the lines $A E, E D, B F$, and $F C$, if the area of $A B C D$ is known to be S.
5. Points M and N are located on the $A C$ side of $\triangle A B C$, and points K and L are on the $A B$ side, with $A M: M N: N C=1: 3: 1$ and $A K=K L=L B$. It is known that the area of $\triangle A B C$ is 1 . Find the area of the quadrilateral $K L N M$.
6. Points M and N are dividing side $A B$ of $\triangle A B C$ into three equal parts $(A M=M N=N B)$. The points M^{\prime} and N^{\prime} are such points on the side $B C$ that $M M^{\prime} \| A C$ and $N N^{\prime} \| A C$. Find the area of the quadrilateral $M N N^{\prime} M^{\prime}$, if the area of $\triangle A B C$ is 1 .
7. Point A_{1} is taken on the side $A C$ of $\triangle A B C$, and point C_{1} is taken on the extension of side $B C$ beyond point C. The length of the segment $A_{1} C$ is 75% of the length of side $A C$, and the length of segment $B C_{1}$ is 120% of the length of side $B C$. What percentage of the area of $\triangle A B C$ is the area of triangle $A_{1} B C_{1}$?
8. Prove that if in trapezoid $A B C D(B C \| A D)$ the midpoint M of one side $A B$ is connected to the ends of the other side $C D$, then the area of the resulting $\triangle C M D$ is half the area of the trapezoid.
9. M is the midpoint of side $B C$ of the unit parallelogram $A B C D$ (area is equal to 1). $A M$ intersects the diagonal $B D$ at point O. Find the area of the quadrilateral $O M C D$.
10. Point E is taken on the side $A C$ of the $\triangle A B C . D$ and F are such points on the sides $A B$ and $B C$ that $D E \| B C$ and $E F \| A B$. Prove that $S_{B D E F}=2 \sqrt{S_{\triangle A D E} \times S_{\triangle E F C}}$.
