Trigonometry

JV Practice 9/6/20
Lucas Jia

Warm Up Problems

1. (1988 AHSME \#13) If $\sin (x)=3 \cdot \cos (x)$, then what is $\sin (x) \cdot \cos (x)$?
2. (AMC 2012 12A \#10) A triangle has area 30, one side of length 10, and the median to that side of length 9 . Let θ be the acute angle formed by that side and the median. What is $\sin \theta$?
3. (C.J.) In triangle $A B C$, side $A B=6, A C=12$, and $\tan (A)=2$. Compute the area of $A B C$.

Guided Problems

1. (Law of Sines) In triangle $A B C$, with side lengths $B C=a, A C=b$, and $A B=c$, prove that

$$
\frac{\sin (A)}{a}=\frac{\sin (B)}{b}=\frac{\sin (C)}{c} .
$$

Hint: use the area formula.

Problems

1. (C.J.) Triangle $A B C$ has $A B=9, A C=5$. Angles B and C are actue with $\tan (C)=$ $3 \tan (B)$. Compute the area of $A B C$.
2. (1999 AHSME \#15) Let x be a real number such that $\sec (x)-\tan (x)=2$. What is $\sec (x)$ $+\tan (x)$?
3. (CEMC ???) In triangle $P Q S$, point R lies on side $Q S$ such that $\angle S P R=90^{\circ}$ and $\angle P R Q=120^{\circ}$. If $Q R=8$ and $P R=12$, what is the area of $\triangle Q P S$?
4. (2005 AMC 10B \#14) Equilateral $\triangle A B C$ has side length $2, M$ is the midpoint of $\overline{A C}$, and C is the midpoint of $\overline{B D}$. What is the area of $\triangle C D M$?
5. (2014 AMC 10A \#13) Equilateral $\triangle A B C$ has side length 1, and squares $A B D E, B C H I$, $C A F G$ lie outside the triangle. What is the area of hexagon $D E F G H I$?

6. (1984 AIME Problems \#3) A point P is chosen in the interior of $\triangle A B C$ such that when lines are drawn through P parallel to the sides of $\triangle A B C$, the resulting smaller triangles t_{1}, t_{2}, and t_{3} in the figure, have areas 4,9 , and 49 , respectively. Find the area of $\triangle A B C$.

7. (C.J.'s crazy area problem) Prove that $\mathrm{ACE}=\mathrm{BDF}$ in area.

