Trigonometry

JV Practice 9/6/20 Lucas Jia

Warm Up Problems

- 1. (1988 AHSME #13) If $\sin(x) = 3 \cdot \cos(x)$, then what is $\sin(x) \cdot \cos(x)$?
- 2. (AMC 2012 12A #10) A triangle has area 30, one side of length 10, and the median to that side of length 9. Let θ be the acute angle formed by that side and the median. What is $\sin \theta$?
- 3. (C.J.) In triangle ABC, side AB = 6, AC = 12, and tan(A) = 2. Compute the area of ABC.

Guided Problems

1. (Law of Sines) In triangle ABC, with side lengths BC = a, AC = b, and AB = c, prove that

$$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}.$$

Hint: use the area formula.

Problems

- 1. (C.J.) Triangle ABC has AB = 9, AC = 5. Angles B and C are actue with $\tan(C) = 3\tan(B)$. Compute the area of ABC.
- 2. (1999 AHSME #15) Let x be a real number such that $\sec(x) \tan(x) = 2$. What is $\sec(x) + \tan(x)$?
- 3. (CEMC ???) In triangle PQS, point R lies on side QS such that $\angle SPR = 90^{\circ}$ and $\angle PRQ = 120^{\circ}$. If QR = 8 and PR = 12, what is the area of $\triangle QPS$?
- 4. (2005 AMC 10B #14) Equilateral $\triangle ABC$ has side length 2, M is the midpoint of \overline{AC} , and C is the midpoint of \overline{BD} . What is the area of $\triangle CDM$?

5. (2014 AMC 10A #13) Equilateral $\triangle ABC$ has side length 1, and squares ABDE, BCHI, CAFG lie outside the triangle. What is the area of hexagon DEFGHI?

6. (1984 AIME Problems #3) A point P is chosen in the interior of $\triangle ABC$ such that when lines are drawn through P parallel to the sides of $\triangle ABC$, the resulting smaller triangles t_1 , t_2 , and t_3 in the figure, have areas 4, 9, and 49, respectively. Find the area of $\triangle ABC$.

7. (C.J.'s crazy area problem) Prove that ACE = BDF in area.

