Logarithms
 JV Practice

1 Warmup

1. What is $b^{x} \cdot b^{y}$?
2. What is $\frac{b^{x}}{b^{y}}$?
3. What is $\left(b^{x}\right)^{y}$?
4. If $b \neq 0$, what is b^{0} ?

2 Log Rules

- Definition: If $b^{x}=a$ where $b>0$ and $x>0$, then $x=\log _{b}(a)$.
- Multiplication: $\log _{b}(x y)=\log _{b}(x)+\log _{b}(y)$
- Division: $\log _{b}\left(\frac{x}{y}\right)=\log _{b}(x)-\log _{b}(y)$
- Exponentiation: $\log _{b}\left(x^{y}\right)=y \log _{b}(x)$
- Convention: Usually, $\log (x)$ means $\log _{10}(x)$ and $\ln (x)$ means $\log _{e}(x)$.
- For any $b \neq 0, \log _{b}(1)=0$ because $b^{0}=1$, and $\log _{b}(b)=1$ because $b^{1}=b$.
- $b^{\log _{b}(a)}=a$

3 Examples

1. $\log _{2}(16)=4$ because $2^{4}=16$
2. $\log _{5}(125)=3$ because $5^{3}=125$
3. $\log _{2}\left(\frac{1}{2}\right)=-1$ because $2^{-1}=\frac{1}{2}$
4. $\log _{8}(2)=\frac{1}{3}$ because $8^{\frac{1}{3}}=\sqrt[3]{8}=2$

4 Problems 1

Find all solutions to the following equations:

1. $\log _{4}\left(x^{2}-2 x\right)=\log _{4}(5 x-12)$
2. $\ln (x)+\ln (x+3)=\ln (20-5 x)$
3. $\log _{2}(x+5)-\log _{2}(2 x-1)=5$
4. $3^{x}=7^{4 x+2}$

5 Another Log Rule

- Change of Base: $\log _{a}(x)=\frac{\log _{b}(x)}{\log _{b}(a)}$ (the base goes on the bottom)
- Fun identity (follows from Change of Base): $\log _{a}(b)=\frac{1}{\log _{b}(a)}$

6 Problems 2

1. (2003 AMC 12B Problem 17) If $\log \left(x y^{3}\right)=1$ and $\log \left(x^{2} y\right)=1$, what is $\log (x y)$?
2. (2005 AMC 10B Problem 17) Suppose that $4^{a}=5,5^{b}=6,6^{c}=7$, and $7^{d}=8$. What is $a \cdot b \cdot c \cdot d$?
3. (2010 AMC 12A Problem 11) The solution of the equation $7^{x+7}=8^{x}$ can be expressed in the form $x=\log _{b} 7^{7}$. What is b ?

$7 \quad$ Problems 3

1. (NYCIML F10B25) Compute $\left(\log _{125} 16\right)\left(\log _{4} 27\right)\left(\log _{3} 625\right)$.
2. (NYCIML F06B07) Compute

$$
\frac{\log 8}{\log \frac{1}{8}}
$$

3. (NYCIML S11B26) Let $\log _{10} 70=m$ and $\log _{10} 20=p$. Given that $\log _{10} 14=A m+B p+C$ where A, B, and C are integers, compute the ordered triple (A, B, C).
4. (NYCIML F06A19) If $\log _{b}(a) \log _{c}(a) \log _{c}(b)=25$ and $\frac{a^{2}}{c^{2}}=c^{k}$, what is the sum of all possible values of k ?

8 Challenge Problems

1. (2000 AIME II Problem 1) The number $\frac{2}{\log _{4} 2000^{6}}+\frac{3}{\log _{5} 2000^{6}}$ can be written as $\frac{m}{n}$ where m and n are relatively prime positive integers. Find $m+n$.
2. The domain of the function $f(x)=\log _{\frac{1}{2}}\left(\log _{4}\left(\log _{\frac{1}{4}}\left(\log _{16}\left(\log _{\frac{1}{16}} x\right)\right)\right)\right.$) is an interval of length $\frac{m}{n}$, where m and n are relatively prime positive integers. What is $m+n$?
