Logarithms
 JV Practice

1 Warmup

1. (NYCIML F10B25) Compute $\left(\log _{125} 16\right)\left(\log _{4} 27\right)\left(\log _{3} 625\right)$.
2. (NYCIML F06B07) Compute

$$
\frac{\log 8}{\log \frac{1}{8}}
$$

3. (NYCIML S11B26) Let $\log _{10} 70=m$ and $\log _{10} 20=p$. Given that $\log _{10} 14=A m+B p+C$ where A, B, and C are integers, compute the ordered triple (A, B, C).
4. (NYCIML F06A19) If $\log _{b}(a) \log _{c}(a) \log _{c}(b)=25$ and $\frac{a^{2}}{c^{2}}=c^{k}$, what is the sum of all possible values of k ?

2 Log Rules

- Definition: If $b^{x}=a$ where $b>0$ and $x>0$, then $x=\log _{b}(a)$.
- Multiplication: $\log _{b}(x y)=\log _{b}(x)+\log _{b}(y)$
- Division: $\log _{b}\left(\frac{x}{y}\right)=\log _{b}(x)-\log _{b}(y)$
- Exponentiation: $\log _{b}\left(x^{y}\right)=y \log _{b}(x)$
- Convention: Usually, $\log (x)$ means $\log _{10}(x)$ and $\ln (x)$ means $\log _{e}(x)$.
- For any $b \neq 0, \log _{b}(1)=0$ because $b^{0}=1$, and $\log _{b}(b)=1$ because $b^{1}=b$.
- $b^{\log _{b}(a)}=a$
- Change of Base: $\log _{a}(x)=\frac{\log _{b}(x)}{\log _{b}(a)}$ (the base goes on the bottom)
- Fun identity (follows from Change of Base): $\log _{a}(b)=\frac{1}{\log _{b}(a)}$

3 Problems 1

1. (2018 AMC 12B Problem 7) What is the value of

$$
\log _{3} 7 \cdot \log _{5} 9 \cdot \log _{7} 11 \cdot \log _{9} 13 \cdots \log _{21} 25 \cdot \log _{23} 27 ?
$$

2. (2002 AMC 12B Problem 22) For all integers n greater than 1 , define $a_{n}=\frac{1}{\log _{n} 2002}$. Let $b=a_{2}+a_{3}+a_{4}+a_{5}$ and $c=a_{10}+a_{11}+a_{12}+a_{13}+a_{14}$. What is $b-c$?
3. (2008 AMC 12A Problem 16) The numbers $\log \left(a^{3} b^{7}\right), \log \left(a^{5} b^{12}\right)$, and $\log \left(a^{8} b^{15}\right)$ are the first three terms of an arithmetic sequence, and the $12^{\text {th }}$ term of the sequence is $\log b^{n}$. What is n ?
4. (2019 AMC 12A Problem 15) Positive real numbers a and b have the property that

$$
\sqrt{\log a}+\sqrt{\log b}+\log \sqrt{a}+\log \sqrt{b}=100
$$

and all four terms on the left are positive integers, where \log denotes the base 10 logarithm. What is $a b$?
5. (1984 AIME Problem 5) Determine the value of $a b$ given

$$
\begin{aligned}
& \log _{8} a+\log _{4} b^{2}=5 \\
& \log _{8} b+\log _{4} a^{2}=7
\end{aligned}
$$

6. (David Altizio, Mock AMC 10/12 2013) Suppose x and y are real numbers such that $\log _{x}(y)=$ 6 and $\log _{2 x}(2 y)=5$. What is $\log _{4 x}(4 y) ?$
7. (2000 AIME II Problem 1) The number $\frac{2}{\log _{4} 2000^{6}}+\frac{3}{\log _{5} 2000^{6}}$ can be written as $\frac{m}{n}$ where m and n are relatively prime positive integers. Find $m+n$.
8. What is the value of a for which $\frac{1}{\log _{2} a}+\frac{1}{\log _{3} a}+\frac{1}{\log _{4} a}=1$?
9. (2015 AMC 12A Problem 14) Simplify $\frac{1}{\log _{2} N}+\frac{1}{\log _{3} N}+\frac{1}{\log _{4} N}+\cdots+\frac{1}{\log _{100} N}$ where $N=(100!)^{3}$
10. (David Altizio, Mock AMC 10/12 2013) Suppose x and y are real numbers such that $\log _{x}(y)=$ 6 and $\log _{2 x}(2 y)=5$. What is $\log _{4 x}(4 y) ?$
11. (NYCIML F11) If $\log _{4 n} 96=\log _{5 n} 75 \sqrt{5}$, compute n^{5}.

4 Challenge Problems 1

1. The domain of the function $f(x)=\log _{\frac{1}{2}}\left(\log _{4}\left(\log _{\frac{1}{4}}\left(\log _{16}\left(\log _{\frac{1}{16}} x\right)\right)\right)\right)$ is an interval of length $\frac{m}{n}$, where m and n are relatively prime positive integers. What is $m+n$?
2. Let S be the set of ordered triples (x, y, z) of real numbers for which

$$
\log _{10}(x+y)=z \text { and } \log _{10}\left(x^{2}+y^{2}\right)=z+1
$$

There are real numbers a and b such that for all ordered triples (x, y, z) in S we have $x^{3}+y^{3}=$ $a \cdot 10^{3 z}+b \cdot 10^{2 z}$. What is the value of $a+b ?$
3. The sum of the base- 10 logarithms of the divisors of 10^{n} is 792 . What is n ?
4. Let $m>1$ and $n>1$ be integers. Suppose that the product of the solutions for x of the equation

$$
8\left(\log _{n} x\right)\left(\log _{m} x\right)-7 \log _{n} x-6 \log _{m} x-2013=0
$$

is the smallest possible integer. What is $m+n$?
5. (David Altizio, Mock AIME I 2015) Suppose that x and y are real numbers such that $\log _{x}(3 y)=\frac{20}{13}$ and $\log _{3 x}(y)=\frac{2}{3}$. The value of $\log _{3 x}(3 y)$ can be expressed in the form $\frac{a}{b}$ where a and b are positive relatively prime integers. Find $a+b$.

5 Challenge Problems 2

1. (2006 AIME I Problem 9) The sequence a_{1}, a_{2}, \ldots is geometric with $a_{1}=a$ and common ratio r, where a and r are positive integers. Given that $\log _{8} a_{1}+\log _{8} a_{2}+\cdots+\log _{8} a_{12}=2006$, find the number of possible ordered pairs (a, r).
2. (2013 AIME II Problem 2) Positive integers a and b satisfy the condition $\log _{2}\left(\log _{2^{a}}\left(\log _{2^{b}}\left(2^{1000}\right)\right)\right)=$ 0 . Find the sum of all possible values of $a+b$.
3. (1995 AIME Problem 2) Find the last three digits of the product of the positive roots of $\sqrt{1995} x^{\log _{1995} x}=x^{2}$.
4. (1983 AIME Problem 1) Let x, y and z all exceed 1 , and let w be a positive number such that $l o g_{x} w=24, \log _{y} w=40$, and $\log _{x y z} w=12$. Find $\log _{z} w$.
5. (2016 AIME II Problem 3) Let x, y, and z be real numbers satisfying the system $\log _{2}(x y z-$ $\left.3+\log _{5} x\right)=5, \log _{3}\left(x y z-3+\log _{5} y\right)=4, \log _{4}\left(x y z-3+\log _{5} z\right)=4$, Find the value of $\left|\log _{5} x\right|+\left|\log _{5} y\right|+\left|\log _{5} z\right|$.
6. (2009 AIME II Problem 2) Suppose that a, b, and c are positive real numbers such that $a^{\log _{3} 7}=27, b^{\log _{7} 11}=49$, and $c^{\log _{11} 25}=\sqrt{11}$. Find

$$
a^{\left(\log _{3} 7\right)^{2}}+b^{\left(\log _{7} 11\right)^{2}}+c^{\left(\log _{11} 25\right)^{2}}
$$

7. (AIME II 2006) The lengths of the sides of a triangle with positive area are $\log _{10} 12, \log _{10} 75$, and $\log _{10} n$, where n is a positive integer. Find the number of possible values for n.
8. (Math Prize 2011) If $n>10$, compute the greatest possible value of

$$
\left.\log n^{\log (\log (\log n))}-\log (\log n)\right)^{\log (\log n)}
$$

9. (2000 AIME I Problem 9) The system of equations

$$
\begin{aligned}
& \log _{10}(2000 x y)-\left(\log _{10} x\right)\left(\log _{10} y\right)=4 \\
& \log _{10}(2 y z)-\left(\log _{10} y\right)\left(\log _{10} z\right)=1 \\
& \log _{10}(z x)-\left(\log _{10} z\right)\left(\log _{10} x\right)=0
\end{aligned}
$$

has two solutions $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$. Find $y_{1}+y_{2}$.

