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Definitions

We say that a has order d modulo m, denoted by ordm(a) = d, if d is the smallest positive integer such
that ad ≡ 1 (mod m).

Problems

These problems are from “104 Number Theory Problems” by D. Andrica, T. Andreescu, Z. Feng.

1. Let p be a prime with p > 5. Prove that p8 ≡ 1 mod 240.

2. (Fermat?s Little Theorem) Let a be a positive integer and let p be a prime. Prove that ap ≡ a mod
p.

3. (Euler’s Theorem) Let a and m be relatively prime positive integers. Then aφ(m) ≡ 1 (mod m).

4. Let p be a prime. Prove that p divides abp − bap for all integers a and b.

5. Let p ≥ 7 be a prime. Prove that the number 11 · · · 1 (p-1 times 1) is divisible by p

6. Prove that for any even positive integer n, n2 − 1 divides 2n! − 1.

7. (IMO 2005) Consider the sequence a1, a2, ... defined by an = 2n+3n+6n−1 for all positive integers
n. Determine all positive integers that are relatively prime to every term of the sequence.

8. (IMO 2003 shortlist) Determine the smallest positive integer k such that there exist integers
x1, x2, . . . , xk with x1

3 + x2
3 + · · ·+ xk

3 = 20022002 .

9. A positive integer x is such that ax ≡ 1 mod m if and only if x is a multiple of the order of a
modulo m.

Solutions

1. Equivalently, we can show that p8 − 1 is a multiple of 16, 3, and 5. Factor

p8 − 1 = (p− 1)(p+ 1)(p2 + 1)(p4 + 1).

Since p is odd, each term is even, so 16 | p8 − 1. Since p ≡ ±1 (mod 3), one of the first two terms
is a multiple of 3. If p ≡ ±1 (mod 5) then one of the first two terms is a multiple of 5. Otherwise,
p2 + 1 is a multiple of 5.

Note: by being more careful, we can even show that p4 − 1 is a multiple of 240. Do you see how?

2. Google it.

3. Google it.

4. abp − bap = ab(bp−1 − ap−1). If a or b is a multiple of p, we are done. Otherwise, bp−1 and ap−1

are both congruent to 1 (mod p), so bp−1 − ap−1 is a multiple of p.

5. 11 · · · 1 = 1
999 · · · 9 = 10p−1−1

9 . Since 10 is relatively prime to p, by Fermat’s little theorem, 10p−1 ≡
1 (mod p). Thus the numerator is a multiple of p, and 9 is relatively prime to p, so the whole
number is a multiple of p.
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6. Since n is even, n + 1 and n − 1 are relatively prime. Since n2 − 1 = (n + 1)(n − 1), we need to
show that each of them divides 2n! − 1. Equivalently, we need to show that 2n! ≡ 1 (mod n − 1)
and 2n! ≡ 1 (mod n+ 1).

Note that φ(n+1) ≤ n, so φ(n+1) | n!. By Euler’s theorem 2φ(n+1) ≡ 1 (mod n+1). Furthermore,
2n! is a perfect power of 2φ(n+1), so also 2n! ≡ 1 (mod n+ 1).

The proof for n− 1 is similar.

7. We have
6an = 6 · 2n + 6 · 3n + 6 · 6n − 6 = 3 · 2n+1 + 2 · 3n+1 + 6n+1 − 6

For any prime p, let n = p− 2 so that n+ 1 = p− 1. By Fermat’s little theorem, we have

2n+1 ≡ 3n+1 ≡ 6n+1 ≡ 1 (mod p),

so we have p | 6an. If p 6= 2, 3 we have p | an. Note also that a2 = 48 which is a multiple of 2 and 3,
so every prime divides some term of the sequence. Thus any number with any prime factor cannot
be relatively prime to each number in the sequence, so the only remaining positive integer is 1.

8. Let M = 20022002. Cubes are 0, 1, 8 or 9 (mod 16), and M ≡ 0 (mod 8). If k < 4, then equating
the two sides mod 16 we see that all the ai are even. Thus we can divide both sides by 16, and
we have that M

8 is a a sum of k perfect cubes. Repeating this 499 more times, we have that
M

22000 = 4 · 10012002 is a sum of k cubes. We have 10012 ≡ 1 (mod 9) so 10012002 ≡ 1 (mod 16).

Thus M
22000 ≡ 4 (mod 16), but this is impossible if M is a sum of fewer than 4 cubes.

We can solve this with k = 4, for example with a1 = a2 = 10 · 2002667 and a3 = a4 = 2002667.

9. Omitted.


