Number Theory 3

Ilqar Ramazanli
February 11, 2018

Problems

These problems are from "104 Number Theory Problems" by D. Andrica, T. Andreescu, Z. Feng.

1. . What is the largest positive integer n for which $n^{3}+100$ is divisible by $n+10$?
2. . Those irreducible fractions! (1) Let n be an integer greater than 2. Prove that among the fractions

$$
\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}
$$

even number are irreducible.
(2) Show that the fraction

$$
\frac{12 n+1}{30 n+2}
$$

is irreducible for all positive integers n.
3. Call a number prime looking if it is composite but not divisible by 2,3 , or 5 . The three smallest prime-looking numbers are 49,77 , and 91 . There are 168 prime numbers less than 1000 . How many prime-looking numbers are there less than 1000 ?
4. Let $n=2^{31} 3^{19}$. How many positive integer divisors of n 2 are less than n but do not divide n ?
5. Compute the sum of the greatest odd divisor of each of the numbers 2006, 2007, . . , 4012 .
6. Let m and n be positive integers such that

$$
\operatorname{lcm}(m, n)+g c d(m, n)=m+n
$$

Prove that one of the two numbers is divisible by the other.
7. Compute the sum of all numbers of the form a / b, where a and b are relatively prime positive divisors of 27000 .
8. We'll solve this IMO Shortlist problem using following steps :
(IMO 2003 shortlist) Determine the smallest positive integer k such that there exist integers $x_{1}, x_{2}, \ldots, x_{k}$ with $x_{1}^{3}+x_{2}^{3}+\cdots+x_{k}^{3}=2002^{2002}$.
(i) Find all possible values of x^{3} on $\bmod 9$
(ii) Find 2002^{2002} on $\bmod 9$.
(iii) Prove that 2002^{2002} can never be represented as a sum of 3 cubes using mod 9 remainders.
(iv) Represent 2002 as sum of cube 4 positive integer
(v) Represent 2002^{2002} as sum of 4 cubes.
9. Let S be full residue class on $\bmod p$, for a prime number p (i.e. the set $\{0,1,2, \ldots, p-1\}$). Let a be any number s.t. $1 \leq a \leq p-1$. Prove that $a S=\{0, a, 2 a, 3 a, \ldots,(p-1) a\}$ is also a full residue class on $\bmod p$.
10. Prove Fermat's little theorem, i.e. for $1 \leq a \leq p-1$, following should hold $a^{p-1} \equiv 1 \bmod p$.

