Modular Arithmetic and Divisibility
 Number Theory

Annie Xu and Emily Zhu
September 11, 2016

1 Solutions

Note: in these solutions, primes are assumed to be positive!

1. Using modular arithmetic, show that 3 divides n if and only if 3 divides the sum of the digits of n. Do the same for 9. Can you find something similar for 11?
We only provide the solution for the case of 11 . (The case for 3 was done in class and the case for 9 is identical.) We claim that 11 divides n if and only if 11 divides the alternating sum of the digits. We can represent $n=d_{k} 10^{k}+d_{k-1} 10^{k-1}+\cdots+d_{1} 10^{1}+d_{0}$. Now assume that 11 divides n or $0 \equiv n(\bmod 11)$. Note that $10 \equiv-1(\bmod 11)$ so:
$n=d_{k} 10^{k}+d_{k-1} 10^{k-1}+\cdots+d_{1} 10^{1}+d_{0} \equiv d_{k}(-1)^{k}+d_{k-1}(-1)^{k-1}+\cdots+d_{1}(-1)^{1}+d_{0} \quad(\bmod 11)$
Thus, 11 divides the alternating sum of digits as well. For the converse, assume that 11 divides $d_{k}(-1)^{k}+d_{k-1}(-1)^{k-1}+\cdots+d_{1}(-1)^{1}+d_{0}$, the alternating sum of digits. Then:
$d_{k}(-1)^{k}+d_{k-1}(-1)^{k-1}+\cdots+d_{1}(-1)^{1}+d_{0} \equiv d_{k} 10^{k}+d_{k-1} 10^{k-1}+\cdots+d_{1} 10^{1}+d_{0}=n \quad(\bmod 11)$
Thus, 11 divides n as well. Note that this actually proves something stronger $-n$ is actually always congruent to its alternating sum of digits $(\bmod 11)$ regardless of if $n \equiv 0(\bmod 11)$.
2. Find $\operatorname{gcd}(221,299)$ and $\operatorname{gcd}(2520,399)$.

We calculate $\operatorname{gcd}(221,299)$.

$$
\begin{aligned}
\operatorname{gcd}(221,299) & =\operatorname{gcd}(221,299-221) & & 299=221+78 \\
\operatorname{gcd}(221,78) & =\operatorname{gcd}(78,221-2 \cdot 78) & & 221=2 \times 78+65 \\
\operatorname{gcd}(78,65) & =\operatorname{gcd}(65,78-65) & & 78=65+13 \\
\operatorname{gcd}(65,13) & =\operatorname{gcd}(13,65-5 \cdot 13) & & 65=5 \times 13+0 \\
& =\operatorname{gcd}(13,0) & &
\end{aligned}
$$

So $\operatorname{gcd}(221,299)=13$.
We calculate $\operatorname{gcd}(2520,399)$.

$$
\begin{aligned}
\operatorname{gcd}(2520,399) & =\operatorname{gcd}(399,2520-6 \cdot 399) & & 2520=6 \times 399+126 \\
\operatorname{gcd}(399,126) & =\operatorname{gcd}(399,399-3 \cdot 126) & & 399=3 \times 126+21 \\
\operatorname{gcd}(126,21) & =\operatorname{gcd}(21,126-6 \cdot 21) & & 126=6 \times 21+0 \quad=\operatorname{gcd}(21,0)
\end{aligned}
$$

So $\operatorname{gcd}(2520,399)=21$.
3. $333+999 \equiv 3+4 \equiv 7 \equiv 2(\bmod 5)$.
$3333 \times 7777=3 \times 2 \equiv 6 \equiv 1(\bmod 5)$.
4. How many steps does it take the Euclidean Algorithm to reach $(1,0)$ when the input is $(n+$ $1, n)$?
We trace through the steps of the Euclidean Algorithm for $\operatorname{gcd}(n+1, n)$:

$$
\begin{aligned}
\operatorname{gcd}(n+1, n) & =\operatorname{gcd}(n, n+1-n) & & n+1=(n)+1 \\
\operatorname{gcd}(n, 1) & =\operatorname{gcd}(1, n-1 \cdot n) & & n=1 \times n+0 \\
& =\operatorname{gcd}(1,0)=1 & &
\end{aligned}
$$

So we see that this takes 2 steps.
5. Let n be a positive integer. Construct a set of n consecutive positive integers that are not prime.
Let n be a positive integer. Then take $(n+1)!+2,(n+1)!+3, \ldots,(n+1)!+(n+1)$, which are n consecutive positive integers. Note that all of these integers are composite (not prime): for each $i=2, \ldots, n+1, i$ divides $(n+i)!+i$. Then, note that since $\frac{(n+i)!}{i}>0$, we have that $\frac{(n+i)!+i}{i}=\frac{(n+i)!}{i}+1>1$. As such, $(n+i)!+i$ is the product of 2 integers where neither is 1 , making it composite.
6. Find all positive integers n such that $(n+1)$ divides $\left(n^{2}+1\right)$.

Note that if $\operatorname{gcd}\left(n+1, n^{2}+1\right)=n+1$, then $(n+1)$ divides $\left(n^{2}+1\right)$. We (kind of) use the Euclidean Algorithm.

$$
\begin{aligned}
\operatorname{gcd}\left(n^{2}+1, n+1\right) & =\operatorname{gcd}\left(n+1, n^{2}+1-(n-1)(n+1)\right) \quad n^{2}+1=(n-1)(n+1)+2 \\
& =\operatorname{gcd}(n+1,2)
\end{aligned}
$$

From, here, we see that $\operatorname{gcd}(n+1,2)=n+1$ means that $n+1=2$ or $n=1$ is the only such n.
Alternate. Substitute $m=n+1$ (and note $m \geq 2$). Then $n^{2}+1=(m-1)^{2}+1=m^{2}-2 m+2$. Since we want m to divide $m^{2}-2 m+2$ and m divides $m^{2}-2 m$, we need m to divide 2 . As $m \geq 2$, we must have $m=2$ or $n=1$.
7. Find all primes in the form $n^{3}-1$.

Note that $n^{3}-1=(n-1)\left(n^{2}+n+1\right)$. Since $n^{2}+n+1 \geq 0$ for all integers n. (Convince yourself of this!), if $n \leq 1$, then $n^{3}-1 \leq 0$ and cannot be prime. If $n \geq 3$ then $n^{3}-1=(n-1)\left(n^{2}+n+1\right)$ with neither factor being 1 . The only remaining case is $n=2$, in which $n^{3}-1=7$, which is prime.
8. What is the largest positive integer n for which $(n+10)$ divides $n^{3}+100$?

This uses the same idea as problem 6. Let $m=n+10$ and note that $m \geq 11$. Then $n^{3}+100=(m-10)^{3}+100=m^{3}-30 m^{2}+300 m-1000+100=m^{3}-30 m^{2}+300 m-900$.
Since m divides the first 3 terms, it remains for m to divide 900 . The largest such m is then 900 , making the largest $n=890$.
9. Show that $\underbrace{1 \ldots 1}_{91 \text { ones }}$ is composite.

We claim that 1111111 divides $\underbrace{1 \ldots 1}_{91 \text { ones }}$. Note that $\underbrace{1 \ldots 1}_{91 \text { ones }}=1111111 \times\left(10^{0}+10^{7}+10^{1} 4+\cdots+\right.$ $10^{8} 4$), which gives that $\underbrace{1 \ldots 1}_{91 \text { ones }}$ is composite.
10. A year is a leap year if and only if the year number is divisible by 400 (such as 2000) or is divisible by 4 but not 100 (such as 2012). The 200 th anniversary of the birth of novelist Charles Dickens was celebrated on February 7, 2012, a Tuesday. On what day of the week was Dickens born?

We first count the number of leap years between 1812 , inclusive and 2012, exclusive. Among the 200 years, 50 are divisible by 4 of which 1900 is not a leap year but 2000 is. Thus, there are 49 leap years. Then, note that there are 365 days in a non-leap year, which is $1(\bmod 7)$ (so every year, a date is shifted by 1 as a day in the week). Letting Sunday be $0(\bmod 7)$, then Tuesday is $2(\bmod 7)$. If n is the day of the week when Dickens was born, note that $n+200 \cdot 1+49 \equiv 2(\bmod 7) \Rightarrow n+4 \equiv 2(\bmod 7) \Rightarrow n \equiv 5(\bmod 7)$, so Dickens was born on a Friday.
11. What is the largest prime factor of 7999488?

Note that this is $8000000-512=512(15625-1)=512(15624)=2^{9} \times 2^{3} \times 3^{2} \times 7 \times 31$, so 31 is the largest prime factor.
12. An n-digit number is cute if its n digits are an arrangement of the set $\{1,2, \ldots, n\}$ and its first k digits form an integer that is divisible by k, for $k=1,2, \ldots, n$. For example, 321 is a cute 3-digit integer because 1 divides 3, 2 divides 32 and 3 divides 321. How many cute 6 -digit numbers are there?
We begin to construct the number $a b c d e f$. Note that $e=5$ since 5 must divide $a b c d e$. Note that b, d, f are some permutation of $2,4,6$ since $a b, a b c d, a b c d e f$ are also divisible by 2 . As such a, c are some permutation of 1,3 . Note that then since 3 divides $a b c$, as shown in problem 1 , 3 must divide $a+b+c=1+3+b=4+b$. As such, $b=2$ is necessary. Then note that since 4 must divide $a b c d$, by divisibility rules, 4 must divide $c d$.

- If $d=4$, then c must be 2 , but c must be odd, so this is impossible.
- If $d=6$, then c can be either 1 or 3 , and then taking a to be the remaining odd number and $f=4$ works.

Thus, the only cute numbers are 123654 and 321654 , and so there are 2 cute 6 -digit numbers.
13. An old receipt has faded. It reads 88 chickens at the total of $\$ x 4.2 y$, where x and y are unreadable digits. How much did each chicken cost?

Note that we want $x 42 y$ to be a 4 -digit number divisible by 88 . Since $x 42 y$ is divisible by 8 , we know that by divisibility rules, $42 y$ is divisible by 8 , so we must have that $y=4$. By divisibility rules for 11 , note that $-x+4-2+y \equiv 0(\bmod 11) \Rightarrow-x+2+4 \equiv 0$ $(\bmod 11) \Rightarrow x \equiv 6(\bmod 11)$. As such, we must have $x=6$ so the total cost was $\$ 64.24$ and the cost of one chicken was that $\$ 0.74$.
14. Find the smallest positive integer such that $\frac{n}{2}$ is a square and $\frac{n}{3}$ is a cube.

Note that clearly $n=2^{a} 3^{b}$ for some natural numbers a, b is necessary for the smallest such n. By the conditions, $\sqrt{2^{a-1} 3^{b}}$ must be an integer, so 2 must divide $a-1$ and b, and $\sqrt[3]{2^{a} 3^{b-1}}$ must be an integer, so 3 must divide a and $b-1$. Then $a=3, b=4$ are the smallest possible values for a, b (check that smaller values fail). Thus, 648 is the smallest positive integer.
15. and 16. were challenge problems. :)

