
Modular Arithmetic and Divisibility
Number Theory

Annie Xu and Emily Zhu
September 11, 2016

1 Solutions

Note: in these solutions, primes are assumed to be positive!

1. Using modular arithmetic, show that 3 divides n if and only if 3 divides the sum of the digits
of n. Do the same for 9. Can you find something similar for 11?

We only provide the solution for the case of 11. (The case for 3 was done in class and the
case for 9 is identical.) We claim that 11 divides n if and only if 11 divides the alternating
sum of the digits. We can represent n = dk10k + dk−110k−1 + · · ·+ d1101 + d0. Now assume
that 11 divides n or 0 ≡ n (mod 11). Note that 10 ≡ −1 (mod 11) so:

n = dk10k+dk−110k−1+· · ·+d1101+d0 ≡ dk(−1)k+dk−1(−1)k−1+· · ·+d1(−1)1+d0 (mod 11)

Thus, 11 divides the alternating sum of digits as well. For the converse, assume that 11
divides dk(−1)k + dk−1(−1)k−1 + · · ·+ d1(−1)1 + d0, the alternating sum of digits. Then:

dk(−1)k+dk−1(−1)k−1+· · ·+d1(−1)1+d0 ≡ dk10k+dk−110k−1+· · ·+d1101+d0 = n (mod 11)

Thus, 11 divides n as well. Note that this actually proves something stronger–n is actually
always congruent to its alternating sum of digits (mod 11) regardless of if n ≡ 0 (mod 11).

2. Find gcd(221, 299) and gcd(2520, 399).

We calculate gcd(221, 299).

gcd(221, 299) = gcd(221, 299− 221) 299 = 221 + 78

gcd(221, 78) = gcd(78, 221− 2 · 78) 221 = 2× 78 + 65

gcd(78, 65) = gcd(65, 78− 65) 78 = 65 + 13

gcd(65, 13) = gcd(13, 65− 5 · 13) 65 = 5× 13 + 0

= gcd(13, 0)

So gcd(221, 299) = 13.

We calculate gcd(2520, 399).

gcd(2520, 399) = gcd(399, 2520− 6 · 399) 2520 = 6× 399 + 126

gcd(399, 126) = gcd(399, 399− 3 · 126) 399 = 3× 126 + 21

gcd(126, 21) = gcd(21, 126− 6 · 21) 126 = 6× 21 + 0 = gcd(21, 0)

So gcd(2520, 399) = 21.
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3. 333 + 999 ≡ 3 + 4 ≡ 7 ≡ 2 (mod 5).

3333× 7777 = 3× 2 ≡ 6 ≡ 1 (mod 5).

4. How many steps does it take the Euclidean Algorithm to reach (1, 0) when the input is (n +
1, n)?

We trace through the steps of the Euclidean Algorithm for gcd(n + 1, n):

gcd(n + 1, n) = gcd(n, n + 1− n) n + 1 = (n) + 1

gcd(n, 1) = gcd(1, n− 1 · n) n = 1× n + 0

= gcd(1, 0) = 1

So we see that this takes 2 steps.

5. Let n be a positive integer. Construct a set of n consecutive positive integers that are not
prime.

Let n be a positive integer. Then take (n + 1)! + 2, (n + 1)! + 3, . . . , (n + 1)! + (n + 1), which
are n consecutive positive integers. Note that all of these integers are composite (not prime):

for each i = 2, . . . , n+ 1, i divides (n+ i)! + i. Then, note that since (n+i)!
i > 0, we have that

(n+i)!+i
i = (n+i)!

i + 1 > 1. As such, (n + i)! + i is the product of 2 integers where neither is 1,
making it composite.

6. Find all positive integers n such that (n + 1) divides (n2 + 1).

Note that if gcd(n + 1, n2 + 1) = n + 1, then (n + 1) divides (n2 + 1). We (kind of) use the
Euclidean Algorithm.

gcd(n2 + 1, n + 1) = gcd(n + 1, n2 + 1− (n− 1)(n + 1)) n2 + 1 = (n− 1)(n + 1) + 2

= gcd(n + 1, 2)

From, here, we see that gcd(n + 1, 2) = n + 1 means that n + 1 = 2 or n = 1 is the only such
n.

Alternate. Substitute m = n+1 (and note m ≥ 2). Then n2+1 = (m−1)2+1 = m2−2m+2.
Since we want m to divide m2 − 2m + 2 and m divides m2 − 2m, we need m to divide 2. As
m ≥ 2, we must have m = 2 or n = 1.

7. Find all primes in the form n3 − 1.

Note that n3−1 = (n−1)(n2+n+1). Since n2+n+1 ≥ 0 for all integers n. (Convince yourself
of this!), if n ≤ 1, then n3−1 ≤ 0 and cannot be prime. If n ≥ 3 then n3−1 = (n−1)(n2+n+1)
with neither factor being 1. The only remaining case is n = 2, in which n3 − 1 = 7, which is
prime.

8. What is the largest positive integer n for which (n + 10) divides n3 + 100?

This uses the same idea as problem 6. Let m = n + 10 and note that m ≥ 11. Then
n3 + 100 = (m− 10)3 + 100 = m3 − 30m2 + 300m− 1000 + 100 = m3 − 30m2 + 300m− 900.
Since m divides the first 3 terms, it remains for m to divide 900. The largest such m is then
900, making the largest n = 890.
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9. Show that 1 . . . 1︸ ︷︷ ︸
91 ones

is composite.

We claim that 1111111 divides 1 . . . 1︸ ︷︷ ︸
91 ones

. Note that 1 . . . 1︸ ︷︷ ︸
91 ones

= 1111111× (100 + 107 + 1014 + · · ·+

1084), which gives that 1 . . . 1︸ ︷︷ ︸
91 ones

is composite.

10. A year is a leap year if and only if the year number is divisible by 400 (such as 2000) or
is divisible by 4 but not 100 (such as 2012). The 200th anniversary of the birth of novelist
Charles Dickens was celebrated on February 7, 2012, a Tuesday. On what day of the week
was Dickens born?

We first count the number of leap years between 1812, inclusive and 2012, exclusive. Among
the 200 years, 50 are divisible by 4 of which 1900 is not a leap year but 2000 is. Thus, there
are 49 leap years. Then, note that there are 365 days in a non-leap year, which is 1 (mod 7)
(so every year, a date is shifted by 1 as a day in the week). Letting Sunday be 0 (mod 7),
then Tuesday is 2 (mod 7). If n is the day of the week when Dickens was born, note that
n + 200 · 1 + 49 ≡ 2 (mod 7) ⇒ n + 4 ≡ 2 (mod 7) ⇒ n ≡ 5 (mod 7), so Dickens was born
on a Friday.

11. What is the largest prime factor of 7999488?

Note that this is 8000000 − 512 = 512(15625 − 1) = 512(15624) = 29 × 23 × 32 × 7 × 31, so
31 is the largest prime factor.

12. An n-digit number is cute if its n digits are an arrangement of the set {1, 2, . . . , n} and its
first k digits form an integer that is divisible by k, for k = 1, 2, . . . , n. For example, 321 is
a cute 3-digit integer because 1 divides 3, 2 divides 32 and 3 divides 321. How many cute
6-digit numbers are there?

We begin to construct the number abcdef . Note that e = 5 since 5 must divide abcde. Note
that b, d, f are some permutation of 2, 4, 6 since ab, abcd, abcdef are also divisible by 2. As
such a, c are some permutation of 1, 3. Note that then since 3 divides abc, as shown in problem
1, 3 must divide a + b + c = 1 + 3 + b = 4 + b. As such, b = 2 is necessary. Then note that
since 4 must divide abcd, by divisibility rules, 4 must divide cd.

• If d = 4, then c must be 2, but c must be odd, so this is impossible.

• If d = 6, then c can be either 1 or 3, and then taking a to be the remaining odd number
and f = 4 works.

Thus, the only cute numbers are 123654 and 321654, and so there are 2 cute 6-digit numbers.

13. An old receipt has faded. It reads 88 chickens at the total of $x4.2y, where x and y are
unreadable digits. How much did each chicken cost?

Note that we want x42y to be a 4-digit number divisible by 88. Since x42y is divisible by
8, we know that by divisibility rules, 42y is divisible by 8, so we must have that y = 4.
By divisibility rules for 11, note that −x + 4 − 2 + y ≡ 0 (mod 11) ⇒ −x + 2 + 4 ≡ 0
(mod 11)⇒ x ≡ 6 (mod 11). As such, we must have x = 6 so the total cost was $64.24 and
the cost of one chicken was that $0.74.

14. Find the smallest positive integer such that n
2 is a square and n

3 is a cube.
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Note that clearly n = 2a3b for some natural numbers a, b is necessary for the smallest such n.
By the conditions,

√
2a−13b must be an integer, so 2 must divide a − 1 and b, and

3
√

2a3b−1

must be an integer, so 3 must divide a and b− 1. Then a = 3, b = 4 are the smallest possible
values for a, b (check that smaller values fail). Thus, 648 is the smallest positive integer.

15. and 16. were challenge problems. :)
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