Modular Arithmetic and Divisibility
 Number Theory

Annie Xu and Emily Zhu
September 11, 2016

1 Introduction

Definition 1 (Divisibility). An integer a is said to be divisible by some nonzero integer b if there exists an integer c such that $a=b c$. Alternatively, for $b \neq 0, \frac{a}{b}$ is an integer.
Definition 2 (Euclidean Algorithm). Given integers a, b, the series of divisors q_{1}, q_{2}, \ldots such that $a=b q_{1}+q_{2}, b=q_{2} q_{3}+q_{4}, q_{2}=q_{4} q_{5}+q_{6}, \ldots$ (see example). The final value (when the other is 0) gives $\operatorname{gcd}(a, b)$, i.e. the greatest common divisor of a and b.

Example 3. Find $\operatorname{gcd}(126,224)$.
Solution.

$$
\begin{aligned}
\operatorname{gcd}(126,224) & =\operatorname{gcd}(126,224-126) & & 224=1 \times 126+98 \\
\operatorname{gcd}(126,98) & =\operatorname{gcd}(98,126-98) & & 126=1 \times 98+28 \\
\operatorname{gcd}(98,28) & =\operatorname{gcd}(28,98-3 \cdot 28) & & 98=3 \times 28+14 \\
\operatorname{gcd}(28,14) & =\operatorname{gcd}(14,28-2 \cdot 14) & & 28=2 \times 14+0 \\
& =\operatorname{gcd}(14,0) & &
\end{aligned}
$$

Thus, $\operatorname{gcd}(126,224)=14$.
Definition 4 (Relatively Prime). Given integers a, b, they are called relatively prime or coprime if $\operatorname{gcd}(a, b)=1$.

Definition 5 (Prime). An integer p is called prime if when p divides a product $a b$ (where a, b are integers), then p divides a or p divides b. Equivalently p is prime if $p=a b$ (where a, b are integers), then either $a=1$ or $b=1$.

Theorem 6 (Fundamental Theorem of Arithmetic). Every nonzero integer can be written uniquely (up to order) as a product of primes.

Definition 7 (Modular Arithmetic). Given integers $a, b, c, b \neq 0, a \equiv c(\bmod b)$ if b divides $(a-c)$.

Example 8.

$$
\begin{array}{lc|cc|c}
5 \equiv 2 & (\bmod 3) & 17 \equiv 12068357 & (\bmod 10) & 54 \equiv 42 \equiv 0 \quad(\bmod 6) \\
2 \neq 1 & (\bmod 3) & 4+1 \equiv 29+6 & (\bmod 5) & 3 \times-1 \equiv 19 \times 15 \quad(\bmod 8)
\end{array}
$$

2 Problems

1. Using modular arithmetic, show that 3 divides n if and only if 3 divides the sum of the digits of n. Do the same for 9 . Can you find something similar for 11 ?
2. Find $\operatorname{gcd}(221,299)$ and $\operatorname{gcd}(2520,399)$.
3. Compute the remainder when $333+999$ and 3333×7777 are divided by 5 .
4. How many steps does it take the Euclidean Algorithm to reach $(1,0)$ when the input is $(n+1, n) ?^{1}$
5. Let n be a positive integer. Construct a set of n consecutive positive integers that are not prime. ${ }^{1}$
6. Find all positive integers n such that $(n+1)$ divides $\left(n^{2}+1\right) .{ }^{2}$
7. Find all primes in the form $n^{3}-1 .{ }^{2}$
8. What is the largest positive integer n for which $(n+10)$ divides $n^{3}+100 ?^{3}$
9. Show that $\underbrace{1 \ldots 1}_{91 \text { ones }}$ is composite. ${ }^{2}$
10. A year is a leap year if and only if the year number is divisible by 400 (such as 2000) or is divisible by 4 but not 100 (such as 2012). The $200^{\text {th }}$ anniversary of the birth of novelist Charles Dickens was celebrated on February 7, 2012, a Tuesday. On what day of the week was Dickens born? ${ }^{4}$
11. What is the largest prime factor of $7999488 ?^{5}$
12. An n-digit number is cute if its n digits are an arrangement of the set $\{1,2, \ldots, n\}$ and its first k digits form an integer that is divisible by k, for $k=1,2, \ldots, n$. For example, 321 is a cute 3 -digit integer because 1 divides 3 , 2 divides 32 and 3 divides 321 . How many cute 6 -digit numbers are there? ${ }^{6}$
13. An old receipt has faded. It reads 88 chickens at the total of $\$ x 4.2 y$, where x and y are unreadable digits. How much did each chicken cost? ${ }^{2}$
14. Find the smallest positive integer such that $\frac{n}{2}$ is a square and $\frac{n}{3}$ is a cube. ${ }^{2}$
15. How many primes have alternating 1 s and 0 s in base 10 (like 101)? ${ }^{7}$
16. If $a, b \in \mathbb{N}$ such that $\frac{a}{b}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{1318}+\frac{1}{1319}$, show that 1979 divides $a .{ }^{8}$
[^0]
[^0]: ${ }^{1}$ From Mathematical Thinking by John P. D'Angelo and Douglas B. West
 ${ }^{2}$ From Number Theory for Mathematical Contests by David A. Santos
 ${ }^{3}$ From AIME 1986
 ${ }^{4}$ AMC 10/12A 2012
 ${ }^{5}$ PUMaC 2011
 ${ }^{6}$ AHSME 1991
 ${ }^{7}$ Putnam 1989
 ${ }^{8}$ IMO 1979

