Number Theory	Misha Lavrov	
	Divisibility	
Western PA ARML Practice		September 20, 2015

Warm-up

1. (ARML 1991) Compute the smallest 3-digit multiple of 7 for which the sum of its digits is also a multiple of 7 .

Let a, b, c be the digits of the number. Then $100 a+10 b+c \equiv a+b+c \equiv 0(\bmod 7)$, so $99 a+9 b \equiv 0(\bmod 7)$, which reduces to $a+2 b \equiv 0(\bmod 7)$.

To be a legitimately 3 -digit number, a must be at least 1 . The least (and only) value of b such that $1+2 b \equiv 0(\bmod 7)$ is 3 , so $b=3$. To have $a+b+c \equiv 0(\bmod 7)$, take $c=3$ as well, giving the answer 133.

1 The divisors of an integer

1. (AIME 1998) A divisor of 10^{99} is chosen uniformly at random. Find the probability that it's divisible by 10^{88}.
A divisor of 10^{99} has the form $2^{x} \cdot 5^{y}$, where $0 \leq x \leq 99$ and $0 \leq y \leq 99$. It is divisible by 10^{88} if $x \geq 88$ and $y \geq 88$. So 12 of the 100 possibilities for x, and 12 of the 100 possibilities for y, result in a multiple of 10^{88}, which means that the probability is $\left(\frac{12}{100}\right)^{2}=\frac{9}{625}$.
2. Find the number of ways to write 300 as a product of three positive integers $a \cdot b \cdot c$. (The product is ordered, so $1 \cdot 3 \cdot 100$ is different from $100 \cdot 1 \cdot 3$.)
We have $300=2^{2} \cdot 3 \cdot 5^{2}$. For each prime, we must choose how to distribute its factors between a, b, and c.

For 2^{2}, we have three ways to order $4 \cdot 1 \cdot 1$ and three ways to reorder $2 \cdot 2 \cdot 1$: six possibilities. The same happens for 5^{2}. For 3, we have three possibilities: $3 \cdot 1 \cdot 1,1 \cdot 3 \cdot 1$, or $1 \cdot 1 \cdot 3$. So the total number of possibilities is $3 \cdot 6^{2}=108$.
3. Call n an everyday number if the sum of the divisors of n (including n itself) is even. For example, 6 is an everyday number, since $1+2+3+6=12$, but 8 is not, since $1+2+4+8=15$. How many of the divisors of 10^{100} are everyday numbers?
If $n=2^{x} \cdot 5^{y}$, then the sum of the divisors of n is $\left(1+2+4+\cdots+2^{x}\right) \cdot\left(1+5+25+\cdots+5^{y}\right)$. The first factor is always odd, so it won't affect the everydayness of n; the second factor adds up $y+1$ odd numbers, so it's even whenever $y+1$ is even - when y is odd.
There are 101 choices for x, if $0 \leq x \leq 100$, and 50 choices for y, if $0 \leq y \leq 100$ and y is odd. Therefore $101 \cdot 50=5050$ divisors of 10^{100} are everyday numbers.
4. (Well-known) Suppose you're in a hallway with 100 closed lockers in a row, and 100 students walk by. The first student opens every locker. The second student closes every other locker. The third student goes to every third locker and toggles it: opens it if it's closed, and closes it if it's open. The remaining students continue this process: the n-th student goes to every n-th locker and toggles it. When all 100 students have walked by, which lockers are open?

The trick is to reverse the description: if the n-th student toggles lockers which are a multiple of n, then the n-th locker is toggled by students which are a divisor of n. A locker ends up open if it's been toggled an odd number of times, so we want to know the numbers between 1 and 100 with an odd number of divisors.

Unless n is a perfect square, each divisor d of n can be paired with another divisor $\frac{n}{d}$, making an even number of divisors. (If n is a perfect square, then \sqrt{n} is left over.) So the perfect squares-lockers $1,4,9,16,25,36,49,64,81$, and 100 -are the only ones left open.
(Alternatively: if the prime factorization of n is $p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$, then n has $\left(a_{1}+1\right)\left(a_{2}+\right.$ 1) $(\cdots)\left(a_{k}+1\right)$ divisors, which is odd only if every a_{i} is even: when n is a perfect square.)
5. (ARML 1984) Find all possible values of k for which $1984 \cdot k$ has exactly 21 positive divisors.

A number n has 21 positive divisors if it's of the form $p^{2} \cdot q^{6}$ (where p and q are primes) or p^{20} (where p is prime). Since 1984 factors as $2^{6} \cdot 31$, the only way to put $1984 \cdot k$ into this form is to make $k=31$, so we get $1984 \cdot 31=2^{6} \cdot 31^{2}$.
6. Let n be of the form $2^{a} \cdot 3^{b}$ for some a and b. Prove that the sum of the divisors of n (including n itself) is at most $3 n$.
The sum of the divisors of n is given by $\left(1+2+2^{2}+\cdots+2^{a}\right)\left(1+3+3^{2}+\cdots+3^{b}\right)$. The inequalities

$$
\left\{\begin{array}{l}
1+2+2^{2}+\cdots+2^{a}=2^{a+1}-1<2^{a+1} \\
1+3+3^{2}+\cdots+3^{b}=\frac{1}{2}\left(3^{b+1}-1\right)<\frac{1}{2} \cdot 3^{b+1}
\end{array}\right.
$$

together imply that the sum of the divisors of n is less than $2^{a+1} \cdot \frac{1}{2} \cdot 3^{b+1}=2^{a} \cdot 3^{b+1}=3 n$.
7. (PUMaC 2011) The sum of the divisors of n (including n itself) is 1815 . If $n=2^{a} \cdot 3^{b}$ for some a and b, find (a, b).

We know that 1815 , which factors as $3 \cdot 5 \cdot 11^{2}$, is equal to $\left(1+2+2^{2}+\cdots+2^{a}\right)\left(1+3+3^{2}+\cdots+3^{b}\right)$. For the first few values of a, the first factor is $1,3,7,15,31, \ldots$ and for the first few values of b, the second factor is $1,4,13,40,121,364, \ldots$. We spot (by looking for factors of 11 , which are rare) that $1815=15 \cdot 121$, so $n=2^{3} \cdot 3^{4}=8 \cdot 81=648$.
8. (ARML 1979) Let $\tau(n)$ denote the number of positive divisors of n. (E.g., $\tau(12)=6$, counting $1,2,3,4,6$, and 12 itself.) For how many positive integers $n \leq 100$ is $\tau(n)$ a multiple of 3?
If $n=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$, then it has $\left(a_{1}+1\right)\left(a_{2}+1\right)(\cdots)\left(a_{k}+1\right)$ divisors, which is a multiple of 3 whenever $a_{i}+1$ is a multiple of 3 for some i.

This happens whenever n is divisible by p^{2} and not p^{3} for some p, and also when n is divisible by p^{5} and not p^{6}, and also higher powers that are irrelevant for $n \leq 100$. We count:
(a) Numbers divisible by 2^{2} and not 2^{3} are $4,12,20,28,36,44,52,60,68,76,84,92,100$.
(b) Multiples divisible by 3^{2} and not 3^{3} are $9,18,36,45,63,72,90,99$ (but 36 was already counted).
(c) Numbers divisible by 5^{2} and not 5^{3} are $25,50,75,100$ (but 100 was already counted).
(d) Numbers divisible by 7^{2} and not 7^{3} are 49 and 98.
(e) Numbers divisible by 2^{5} and not 2^{6} are 32 and 96 .

Altogether, there are 27 such numbers.
9. (ARML 2014) Find the smallest positive integer n such that $214 \cdot n$ and $2014 \cdot n$ have the same number of divisors.
We have $214=2 \cdot 107$ and $2014=2 \cdot 19 \cdot 53$. If $n=2^{a} \cdot 19^{b} \cdot 53^{c} \cdot 107^{d}$, then $214 \cdot n$ has $(a+2)(b+1)(c+1)(d+2)$ divisors and $2014 \cdot n$ has $(a+2)(b+2)(c+2)(d+1)$ divisors. So we want $(b+1)(c+1)(d+2)=(b+2)(c+2)(d+1)$.
After some experimentation, we realize that one way to do this is to set $n=19^{2} \cdot 53$, in which case $b=2, c=1, d=0$, and $(b+1)(c+1)(d+2)=(b+2)(c+2)(d+1)=12$. We can check that we can't do better by seeing that $n=19^{3}$ doesn't work and that all 7 possibilities with $b+c+d \leq 2$ don't work. Note that introducing new primes can never help us, since it changes the number of divisors of $214 \cdot n$ and of $2014 \cdot n$ by the same factor.

So $n=19^{2} \cdot 53=19133$ is the best solution.

2 Prime factorization

1. Prove that $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a \cdot b$.

For every prime p, suppose that p divides a exactly x times, and p divides b exactly y times. (This is denoted $p^{x}\left\|a, p^{y}\right\| b$.) Then $p^{\min (x, y)} \| \operatorname{gcd}(a, b)$ and $p^{\max (x, y)} \| \operatorname{lcm}(a, b)$. Therefore the power of p dividing the right-hand side is $\min (x, y)+\max (x, y)=x+y$, same as the right-hand side.

Since the power of p dividing both sides is the same for any prime p, the two sides must be equal.
2. (USAMO 1972) Prove that for all positive integers a, b, c,

$$
\frac{\operatorname{gcd}(a, b, c)^{2}}{\operatorname{gcd}(a, b) \cdot \operatorname{gcd}(a, c) \cdot \operatorname{gcd}(b, c)}=\frac{\operatorname{lcm}(a, b, c)^{2}}{\operatorname{lcm}(a, b) \cdot \operatorname{lcm}(a, c) \cdot \operatorname{lcm}(b, c)} .
$$

Once again, let p be a prime, and let $p^{x}\left\|a, p^{y}\right\| b, p^{z} \| c$. Since the equations are symmetric in a, b, and c, we can assume without loss of generality that $x \leq y \leq z$. Then the power of p dividing the left-hand side is $2 x-(x+x+y)=-y$, and the power of p dividing the right-hand side is $(2 z-(y+z+z)=-y$.

Since the power of p dividing both sides is the same for any prime p, the two sides must be equal.
3. (AIME 1991) How many reduced fractions $\frac{a}{b}$ are there such that $a b=20$! and $0<\frac{a}{b}<1$?

The prime factorization of 20 ! is $2^{18} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19$. If the same prime number appears in the factorization of a and b, then $\frac{a}{b}$ is not reduced, which is not allowed. So each of the eight prime powers that 20 ! factors into must end up entirely in a or else entirely in b. There are 2^{8} ways to do this.

Exactly half of these will satisfy $\frac{a}{b}<1$, since either $\frac{a}{b}<1$ or else $\frac{b}{a}<1$. So there are $2^{7}=128$ solutions.
4. Find all solutions to $x^{2}+3 x=y^{2}$, where x and y are positive integers.

For any prime p, the power of p dividing y^{2} is even, so the power of p dividing $x^{2}+3 x=x(x+3)$ is even. If p divides both x and $x+3$, then $p \mid(x+3)-x=3$. So for primes p other than 3 , the even power of p dividing y^{2} must entirely divide either x or $x+3$ as well.

If the powers of 3 dividing x and $x+3$ also happen to be even (including 0), then x and $x+3$ are perfect squares, which is only possible when $x=1$ and $x+3=4$. If the powers of 3 dividing x and $x+3$ are both odd, then $x / 3$ and $(x+3) / 3=x / 3+1$ are perfect squares, which is only possible when $x / 3=0$ and $x / 3+1=1$ (but this is ruled out because $x>0$. So the only solution is $x=1$, which means $y=2$.
5. (Putnam 2003) Show that for each positive integer n,

$$
n!=\prod_{i=1}^{n} \operatorname{lcm}(1,2, \ldots,\lfloor n / i\rfloor)
$$

For every prime p, the number of times p divides n ! is given by

$$
\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor+\cdots
$$

This can be seen as the number of points with positive integer coordinates under the graph of the curve $y=n \cdot p^{-x}$. The first term, $\left\lfloor\frac{n}{p}\right\rfloor$, gives the number of such points with $x=1$. The second term counts points with $x=2$, and so on.

We can count these points in a different way as well. If we fix the y-coordinate, the number of points with $y=i$ is given by the largest value of x such that $n \cdot p^{-x}>i$, or $p^{x}<\frac{n}{i}$. Coincidentally, this happens to equal the largest power of p that divides $\operatorname{lcm}(1,2, \ldots,\lfloor n / i\rfloor)$.

Since the power of p dividing both sides is the same for any prime p, the two sides must be equal.

