Number Theory	Misha Lavrov	
	Divisibility	
Western PA ARML Practice		September 20, 2015

Warm-up

1. (ARML 1991) Compute the smallest 3-digit multiple of 7 for which the sum of its digits is also a multiple of 7 .

1 The divisors of an integer

1. (AIME 1998) A divisor of 10^{99} is chosen uniformly at random. Find the probability that it's divisible by 10^{88}.
2. Find the number of ways to write 300 as a product of three positive integers $a \cdot b \cdot c$. (The product is ordered, so $1 \cdot 3 \cdot 100$ is different from $100 \cdot 1 \cdot 3$.)
3. Call n an everyday number if the sum of the divisors of n (including n itself) is even. For example, 6 is an everyday number, since $1+2+3+6=12$, but 8 is not, since $1+2+4+8=15$.

How many of the divisors of 10^{100} are everyday numbers?
4. (Well-known) Suppose you're in a hallway with 100 closed lockers in a row, and 100 students walk by. The first student opens every locker. The second student closes every other locker. The third student goes to every third locker and toggles it: opens it if it's closed, and closes it if it's open. The remaining students continue this process: the n-th student goes to every n-th locker and toggles it.
When all 100 students have walked by, which lockers are open?
5. (ARML 1984) Find all possible values of k for which $1984 \cdot k$ has exactly 21 positive divisors.
6. Let n be of the form $2^{a} \cdot 3^{b}$ for some a and b. Prove that the sum of the divisors of n (including n itself) is at most $3 n$.
7. (PUMaC 2011) The sum of the divisors of n (including n itself) is 1815 . If $n=2^{a} \cdot 3^{b}$ for some a and b, find (a, b).
8. (ARML 1979) Let $\tau(n)$ denote the number of positive divisors of n. (E.g., $\tau(12)=6$, counting $1,2,3,4,6$, and 12 itself.) For how many positive integers $n \leq 100$ is $\tau(n)$ a multiple of 3 ?
9. (ARML 2014) Find the smallest positive integer n such that $214 \cdot n$ and $2014 \cdot n$ have the same number of divisors.

2 Prime factorization

1. (AIME 1991) How many reduced fractions $\frac{a}{b}$ are there such that $a b=20$! and $0<\frac{a}{b}<1$?
2. Prove that $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a \cdot b$.
3. (USAMO 1972) Prove that for all positive integers a, b, c,

$$
\frac{\operatorname{gcd}(a, b, c)^{2}}{\operatorname{gcd}(a, b) \cdot \operatorname{gcd}(a, c) \cdot \operatorname{gcd}(b, c)}=\frac{\operatorname{lcm}(a, b, c)^{2}}{\operatorname{lcm}(a, b) \cdot \operatorname{lcm}(a, c) \cdot \operatorname{lcm}(b, c)} .
$$

4. Find all solutions to $x^{2}+3 x=y^{2}$, where x and y are positive integers.
5. (Putnam 2003) Show that for each positive integer n,

$$
n!=\prod_{i=1}^{n} \operatorname{lcm}(1,2, \ldots,\lfloor n / i\rfloor)
$$

