Fermat's Little Theorem Solutions

Joseph Zoller

September 27, 2015

Solutions

- 1. Find $3^{31} \mod 7$. [Solution: $3^{31} \equiv 3 \mod 7$] By Fermat's Little Theorem, $3^6 \equiv 1 \mod 7$. Thus, $3^{31} \equiv 3^1 \equiv 3 \mod 7$.
- 2. Find $2^{35} \mod 7$. [Solution: $2^{35} \equiv 4 \mod 7$] By Fermat's Little Theorem, $2^6 \equiv 1 \mod 7$. Thus, $2^{35} \equiv 2^5 \equiv 32 \equiv 4 \mod 7$.
- 3. Find 128¹²⁹ mod 17.
 [Solution: 128¹²⁹ ≡ 9 mod 17]
 By Fermat's Little Theorem, 128¹⁶ ≡ 9¹⁶ ≡ 1 mod 17. Thus, 128¹²⁹ ≡ 9¹ ≡ 9 mod 17.
- 4. (1972 AHSME 31) The number 2^{1000} is divided by 13. What is the remainder? [Solution: $2^{1000} \equiv 3 \mod 13$] By Fermat's Little Theorem, $2^{12} \equiv 1 \mod 13$. Thus, $2^{1000} \equiv 2^{400} \equiv 2^{40} \equiv 2^4 \equiv 16 \equiv 3 \mod 13$.
- 5. Find $29^{25} \mod 11$.
 - [Solution: $29^{25} \equiv 10 \mod 11$]

By Fermat's Little Theorem, $29^{10} \equiv 7^{10} \equiv 1 \mod 11$. Thus, $29^{25} \equiv 7^5 \equiv 7(-4)^4 \equiv 7 \cdot 256 \equiv 7 \cdot 3 \equiv 21 \equiv 10 \mod 11$.

6. Find $2^{20} + 3^{30} + 4^{40} + 5^{50} + 6^{60} \mod 7$.

[Solution: $2^{20} + 3^{30} + 4^{40} + 5^{50} + 6^{60} \equiv 0 \mod 7$] By Fermat's Little Theorem, $2^6 \equiv 3^6 \equiv 4^6 \equiv 5^6 \equiv 6^6 \equiv 1 \mod 7$. Thus, $2^{20} + 3^{30} + 4^{40} + 5^{50} + 6^{10} \equiv 1 \mod 7$.

- $6^{60} \equiv 2^2 + 3^0 + 4^4 + 5^2 + 6^0 \equiv 4 + 1 + 2^8 + 25 + 1 \equiv 4 + 1 + 4 + 4 + 1 \equiv 14 \equiv 0 \mod 7.$
- 7. Let

$$a_1 = 4$$
, $a_n = 4^{a_{n-1}}$, $n > 1$

Find $a_{100} \mod 7$.

[Solution: $a_{100} \equiv 4 \mod 7$]

By Fermat's Little Theorem, $4^6 \equiv 1 \mod 7$. Now, $4^a \equiv 4 \mod 6$ for all positive *a*. Thus, $4^{a_k} \equiv 4 \mod 6$ for all positive *k*, which also means that $a_{k+1} \equiv 4 \mod 6$ for all positive *k*. Let $a_{99} = 4 + 6t$ for some integer *t*. Then,

$$a_{100} \equiv 4^{a_{99}} \equiv 4^{4+6t} \equiv 4^4 (4^6)^t \equiv 256 \equiv 46 \equiv 4 \mod 7$$

(Actually $a_n \equiv 4 \mod 7$ for all $n \ge 1$.)

8. Solve the congruence

$$x^{103} \equiv 4 \mod 11.$$

[Solution: $x \equiv 5 \mod 11$]

By Fermat's Little Theorem, $x^{10} \equiv 1 \mod 11$. Thus, $x^{103} \equiv x^3 \mod 11$. So, we only need to solve $x^3 \equiv 4 \mod 11$. If we try all the values from x = 1 through x = 10, we find that $5^3 \equiv 4 \mod 11$. Thus, $x \equiv 5 \mod 11$.

9. Find all integers x such that $x^{86} \equiv 6 \mod 29$.

[Solution: $x \equiv 8, 21 \mod 29$]

By Fermat's Little Theorem, $x^{28} \equiv 1 \mod 29$. Thus, $x^{86} \equiv x^2 \mod 29$. So, we only need to solve $x^2 \equiv 6 \mod 29$. This is the same as $x^2 \equiv 64 \mod 29$, which means that $x^2 - 64 \equiv (x-8)(x+8) \equiv 0 \mod 29$. Thus, $x \equiv 8, 21 \mod 29$.

10. What are the possible periods of the sequence x, x^2, x^3, \dots in mod 13 for different values of x? Find values of x that achieve these periods.

[Solution: 1, 2, 3, 4, 6, 12]

By Fermat's Little Theorem, $x^{12} \equiv 1 \pmod{13}$. Thus, every cyclic length has to be a factor of 12, because after 12 iterations, every cyclic should be back where it started. Thus, the possible cycle lengths are: 1, 2, 3, 4, 6, 12.

Cycle length =
$$1 : x = 1$$
 (1)
Cycle length = $12 : x = 2$ (1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7)

Since 2 has a maximum side length, we can take powers of 2 to get the other cycle lengths:

 $\begin{array}{l} \text{Cycle length}=2:x=2^{12/2}=2^6=64\implies x=12\ (1,12)\\ \text{Cycle length}=3:x=2^{12/3}=2^4=16\implies x=3\ (1,3,9)\\ \text{Cycle length}=4:x=2^{12/4}=2^3=8\implies x=8\ (1,8,12,5)\\ \text{Cycle length}=6:x=2^{12/6}=2^2=4\implies x=4\ (1,4,3,12,9,10) \end{array}$

11. If a googolplex is $10^{10^{100}}$, what day of the week will it be a googolplex days from now? (Today is Sunday)

[Solution: Thursday (4 days from today)]

By Fermat's Little Theorem, $10^6 \equiv 1 \pmod{7}$. Thus, we want to find out what 10^{100} is in mod 6. Notice that

$$10^2 = 100 \equiv 4 \equiv 10 \pmod{6}$$

Thus, by induction it is true that $10^k \equiv (10 \equiv 4 \pmod{6}) \implies 10^{100} \equiv 4 \pmod{6}$. Therefore, I can say that $10^{100} = 6c + 4$ for some positive integer c. By substituting, we get that

$$10^{10^{100}} = 10^{6c+4} = (10^6)^c 10^4 \implies 10^{10^{100}} \equiv (1)^c 100^2 \equiv 100^2 \equiv 2^2 \equiv 4 \pmod{7}$$

This means that googolplex is 4 more than a multiple of 7, which means the day of the week will increase by 4. Therefore, in googolplex days it will be a Thursday.

12. Suppose that p and q are distinct primes, $a^p \equiv a \pmod{q}$, and $a^q \equiv a \pmod{p}$. Prove that $a^{pq} \equiv a \pmod{pq}$.

[Proof:]

By Fermat's Little Theorem, we know that $a^p \equiv a \pmod{p}$ and $a^q \equiv a \pmod{q}$ no matter what integer a is. Combining with what is given, we have that

 $a^p \equiv a \pmod{p} \implies (a^p)^q \equiv a^q \equiv a \pmod{p} \implies a^{pq} \equiv a \pmod{p}$ $a^q \equiv a \pmod{q} \implies (a^q)^p \equiv a^p \equiv a \pmod{q} \implies a^{pq} \equiv a \pmod{q}$

This means that $a^{pq} = px + a = qy + a$ for some integers x and y. However, this then implies that $px = qy \implies x = qk, y = pk$ for some integer k, because p and q are both prime. Thus, $a^{pq} = p(qk) + a = q(pk) + a = (pq)k + a \implies a^{pq} \equiv a \pmod{pq}$. \Box

13. Find all positive integers x such that $2^{2^x+1}+2$ is divisible by 17.

[Solution: x = 2]

First, we need find when $2^a + 2$ is divisible by 17, where a is some positive integer. This is exactly when

$$2^a + 2 \equiv 0 \pmod{17} \iff 2^a \equiv -2 \equiv 15 \equiv 32 \pmod{17}$$

Thus, a = 5 is smallest solution.

By Fermat's Little Theorem, we know that $2^{16} \equiv 1 \pmod{17}$. Thus, the cycle created by 2 has to have a length divisible by 16. Notice that $2^4 \equiv 16 \equiv -1 \pmod{17} \implies 2^8 \equiv (-1)^2 \equiv 1 \pmod{17}$, so the cycle has a length of 8 because this is the smallest power possible. Thus, $2^a + 2 \equiv 0 \pmod{17}$ exactly when $a \equiv 5 \pmod{8}$.

Next, we need to find all x such that $2^x + 1 \equiv 5 \pmod{8}$. Simplify to get

$$2^x + 1 \equiv 5 \pmod{8} \iff 2^x \equiv 4 \pmod{8}$$

This is only true when x = 2, because for all greater powers, 2^x is divisible by 8, so the congruency will never be true again.

Thus, $2^{2^x+1}+2$ is divisible by 17 $\iff x=2$.

- 14. An alternative proof of Fermat's Little Theorem, in two steps:
 - (a) Show that (x + 1)^p ≡ x^p + 1 (mod p) for every integer x, by showing that the coefficient of x^k is the same on both sides for every k = 0, ..., p.
 [Proof:]

$$(x+1)^p = \sum_{k=0}^p \binom{p}{k} x^k = 1 + x^p + \sum_{k=1}^{p-1} \binom{p}{k} x^k \equiv 1 + x^p + \sum_{k=1}^{p-1} 0x^k \pmod{p} = 1 + x^p \pmod{p}$$

because $\binom{p}{k}$ has a factor of p in it when 0 < k < p. \Box

(b) Show that $x^p \equiv x \pmod{p}$ by induction over x.

[Proof:]

First, we must show the base case is true for x = 0: $0^p \equiv 0 \pmod{p}$.

Second, we must prove the inductive case. Assume that $x^p \equiv x \pmod{p}$. Then, from part (a) we know that:

 $(x+1)^p \equiv x^p + 1 \pmod{p} \equiv (x) + 1 \pmod{p} \equiv (x+1) \pmod{p}$

Thus, by induction, we have shown that $x^p \equiv x \pmod{p}$ for every integer x

15. Let p be an odd prime. Expand $(x - y)^{p-1}$, reducing the coefficients mod p.

[Solution:
$$(x - y)^{p-1} \equiv \sum_{k=0}^{p-1} x^{p-1-k} y^k \pmod{p}$$
]

First of all, we know that

$$(x-y)^{p-1} = \sum_{k=0}^{p-1} \binom{p-1}{k} x^{p-1-k} (-y)^k = \sum_{k=0}^{p-1} \frac{(p-1)!}{k!(p-1-k)!} (-1)^k x^{p-1-k} y^k$$

By Wilson's Theorem, we know that $(p-1)! \equiv -1 \pmod{p}$. Also, we can examine k!:

$$\begin{aligned} k! &= (k)(k-1)...(1) \equiv (k-p)(k-1-p)...(1-p) \pmod{p} \\ &\equiv (p-k)(p-k+1)...(p-1)(-1)^k \pmod{p} \\ &\equiv (-1)^k(p-1)...(p-(k-1))(p-k) \pmod{p} \\ \implies k!(p-1-k)! \equiv (-1)^k(p-1)...(p-(k-1))(p-k)(p-1-k)! \pmod{p} \\ &\equiv (-1)^k(p-1)! \pmod{p} \\ \implies k!(p-1-k)! \equiv (-1)^k(p-1)! \pmod{p} \\ \implies 1 \equiv \frac{(p-1)!}{k!(p-1-k)!} (-1)^k \pmod{p} \end{aligned}$$

because k! and (p-1-k)! are relatively prime to p, since p is prime and they have no factors of p. Thus, by substituting, we get that

$$(x-y)^{p-1} = \sum_{k=0}^{p-1} \frac{(p-1)!}{k!(p-1-k)!} (-1)^k x^{p-1-k} y^k \equiv \sum_{k=0}^{p-1} x^{p-1-k} y^k \pmod{p}$$

so every coefficient is reduced to 1 in mod p.