Fermat's Little Theorem Solutions

Joseph Zoller

September 27, 2015

Solutions

1. Find $3^{31} \bmod 7$.
[Solution: $\left.3^{31} \equiv 3 \bmod 7\right]$
By Fermat's Little Theorem, $3^{6} \equiv 1 \bmod 7$. Thus, $3^{31} \equiv 3^{1} \equiv 3 \bmod 7$.
2. Find $2^{35} \bmod 7$.
[Solution: $\left.2^{35} \equiv 4 \bmod 7\right]$
By Fermat's Little Theorem, $2^{6} \equiv 1 \bmod 7$. Thus, $2^{35} \equiv 2^{5} \equiv 32 \equiv 4 \bmod 7$.
3. Find $128^{129} \bmod 17$.
[Solution: $\left.128^{129} \equiv 9 \bmod 17\right]$
By Fermat's Little Theorem, $128^{16} \equiv 9^{16} \equiv 1 \bmod 17$. Thus, $128^{129} \equiv 9^{1} \equiv 9 \bmod 17$.
4. (1972 AHSME 31) The number 2^{1000} is divided by 13 . What is the remainder?
[Solution: $\left.2^{1000} \equiv 3 \bmod 13\right]$
By Fermat's Little Theorem, $2^{12} \equiv 1 \bmod 13$. Thus, $2^{1000} \equiv 2^{400} \equiv 2^{40} \equiv 2^{4} \equiv 16 \equiv 3 \mathrm{mod}$ 13.
5. Find $29^{25} \bmod 11$.
[Solution: $\left.29^{25} \equiv 10 \bmod 11\right]$
By Fermat's Little Theorem, $29^{10} \equiv 7^{10} \equiv 1 \bmod 11$. Thus, $29^{25} \equiv 7^{5} \equiv 7(-4)^{4} \equiv 7 \cdot 256 \equiv$ $7 \cdot 3 \equiv 21 \equiv 10 \bmod 11$.
6. Find $2^{20}+3^{30}+4^{40}+5^{50}+6^{60} \bmod 7$.
[Solution: $\left.2^{20}+3^{30}+4^{40}+5^{50}+6^{60} \equiv 0 \bmod 7\right]$
By Fermat's Little Theorem, $2^{6} \equiv 3^{6} \equiv 4^{6} \equiv 5^{6} \equiv 6^{6} \equiv 1 \bmod 7$. Thus, $2^{20}+3^{30}+4^{40}+5^{50}+$ $6^{60} \equiv 2^{2}+3^{0}+4^{4}+5^{2}+6^{0} \equiv 4+1+2^{8}+25+1 \equiv 4+1+4+4+1 \equiv 14 \equiv 0 \bmod 7$.
7. Let

$$
a_{1}=4, a_{n}=4^{a_{n-1}}, n>1
$$

Find $a_{100} \bmod 7$.
[Solution: $\left.a_{100} \equiv 4 \bmod 7\right]$
By Fermat's Little Theorem, $4^{6} \equiv 1 \bmod 7$. Now, $4^{a} \equiv 4 \bmod 6$ for all positive a. Thus, $4^{a_{k}} \equiv 4 \bmod 6$ for all positive k, which also means that $a_{k+1} \equiv 4 \bmod 6$ for all positive k. Let $a_{99}=4+6 t$ for some integer t. Then,

$$
a_{100} \equiv 4^{a_{99}} \equiv 4^{4+6 t} \equiv 4^{4}\left(4^{6}\right)^{t} \equiv 256 \equiv 46 \equiv 4 \bmod 7
$$

(Actually $a_{n} \equiv 4 \bmod 7$ for all $n \geq 1$.)
8. Solve the congruence

$$
x^{103} \equiv 4 \bmod 11
$$

[Solution: $x \equiv 5 \bmod 11]$
By Fermat's Little Theorem, $x^{10} \equiv 1 \bmod 11$. Thus, $x^{103} \equiv x^{3} \bmod 11$. So, we only need to solve $x^{3} \equiv 4 \bmod 11$. If we try all the values from $x=1$ through $x=10$, we find that $5^{3} \equiv 4$ $\bmod 11$. Thus, $x \equiv 5 \bmod 11$.
9. Find all integers x such that $x^{86} \equiv 6 \bmod 29$.
[Solution: $x \equiv 8,21 \bmod 29]$
By Fermat's Little Theorem, $x^{28} \equiv 1 \bmod 29$. Thus, $x^{86} \equiv x^{2} \bmod 29$. So, we only need to solve $x^{2} \equiv 6 \bmod 29$. This is the same as $x^{2} \equiv 64 \bmod 29$, which means that $x^{2}-64 \equiv$ $(x-8)(x+8) \equiv 0 \bmod 29$. Thus, $x \equiv 8,21 \bmod 29$.
10. What are the possible periods of the sequence x, x^{2}, x^{3}, \ldots in $\bmod 13$ for different values of x ? Find values of x that achieve these periods.
[Solution: 1, 2, 3, 4, 6, 12]
By Fermat's Little Theorem, $x^{12} \equiv 1(\bmod 13)$. Thus, every cyclic length has to be a factor of 12 , because after 12 iterations, every cyclic should be back where it started. Thus, the possible cycle lengths are: $1,2,3,4,6,12$.

Cycle length $=1: x=1$ (1)
Cycle length $=12: x=2(1,2,4,8,3,6,12,11,9,5,10,7)$
Since 2 has a maximum side length, we can take powers of 2 to get the other cycle lengths:

$$
\begin{gathered}
\text { Cycle length }=2: x=2^{12 / 2}=2^{6}=64 \Longrightarrow x=12(1,12) \\
\text { Cycle length }=3: x=2^{12 / 3}=2^{4}=16 \Longrightarrow x=3(1,3,9) \\
\text { Cycle length }=4: x=2^{12 / 4}=2^{3}=8 \Longrightarrow x=8(1,8,12,5) \\
\text { Cycle length }=6: x=2^{12 / 6}=2^{2}=4 \Longrightarrow x=4(1,4,3,12,9,10)
\end{gathered}
$$

11. If a googolplex is $10^{10^{100}}$, what day of the week will it be a googolplex days from now? (Today is Sunday)
[Solution: Thursday (4 days from today)]
By Fermat's Little Theorem, $10^{6} \equiv 1(\bmod 7)$. Thus, we want to find out what 10^{100} is in $\bmod 6$. Notice that

$$
10^{2}=100 \equiv 4 \equiv 10(\bmod 6)
$$

Thus, by induction it is true that $10^{k} \equiv{ }^{\prime} 10 \equiv 4(\bmod 6) \Longrightarrow 10^{100} \equiv 4(\bmod 6)$.
Therefore, I can say that $10^{100}=6 c+4$ for some positive integer c. By substituting, we get that

$$
10^{10^{100}}=10^{6 c+4}=\left(10^{6}\right)^{c} 10^{4} \Longrightarrow 10^{10^{100}} \equiv(1)^{c} 100^{2} \equiv 100^{2} \equiv 2^{2} \equiv 4(\bmod 7)
$$

This means that googolplex is 4 more than a multiple of 7 , which means the day of the week will increase by 4 . Therefore, in googolplex days it will be a Thursday.
12. Suppose that p and q are distinct primes, $a^{p} \equiv a(\bmod q)$, and $a^{q} \equiv a(\bmod p)$. Prove that $a^{p q} \equiv a(\bmod p q)$.
[Proof:]
By Fermat's Little Theorem, we know that $a^{p} \equiv a(\bmod p)$ and $a^{q} \equiv a(\bmod q)$ no matter what integer a is. Combining with what is given, we have that

$$
\begin{aligned}
& a^{p} \equiv a(\bmod p) \Longrightarrow\left(a^{p}\right)^{q} \equiv a^{q} \equiv a(\bmod p) \Longrightarrow a^{p q} \equiv a(\bmod p) \\
& a^{q} \equiv a(\bmod q) \Longrightarrow\left(a^{q}\right)^{p} \equiv a^{p} \equiv a(\bmod q) \Longrightarrow a^{p q} \equiv a(\bmod q)
\end{aligned}
$$

This means that $a^{p q}=p x+a=q y+a$ for some integers x and y. However, this then implies that $p x=q y \Longrightarrow x=q k, y=p k$ for some integer k, because p and q are both prime. Thus, $a^{p q}=p(q k)+a=q(p k)+a=(p q) k+a \Longrightarrow a^{p q} \equiv a(\bmod p q)$.
13. Find all positive integers x such that $2^{2^{x}+1}+2$ is divisible by 17 .
[Solution: $x=2$]
First, we need find when $2^{a}+2$ is divisible by 17 , where a is some positive integer. This is exactly when

$$
2^{a}+2 \equiv 0(\bmod 17) \Longleftrightarrow 2^{a} \equiv-2 \equiv 15 \equiv 32(\bmod 17)
$$

Thus, $a=5$ is smallest solution.
By Fermat's Little Theorem, we know that $2^{16} \equiv 1(\bmod 17)$. Thus, the cycle created by 2 has to have a length divisible by 16 . Notice that $2^{4} \equiv 16 \equiv-1(\bmod 17) \Longrightarrow 2^{8} \equiv(-1)^{2} \equiv 1$ $(\bmod 17)$, so the cycle has a length of 8 because this is the smallest power possible. Thus, $2^{a}+2 \equiv 0(\bmod 17)$ exactly when $a \equiv 5(\bmod 8)$.
Next, we need to find all x such that $2^{x}+1 \equiv 5(\bmod 8)$. Simplify to get

$$
2^{x}+1 \equiv 5(\bmod 8) \Longleftrightarrow 2^{x} \equiv 4(\bmod 8)
$$

This is only true when $x=2$, because for all greater powers, 2^{x} is divisible by 8 , so the congruency will never be true again.
Thus, $2^{2^{x}+1}+2$ is divisible by $17 \Longleftrightarrow x=2$.
14. An alternative proof of Fermat's Little Theorem, in two steps:
(a) Show that $(x+1)^{p} \equiv x^{p}+1(\bmod p)$ for every integer x, by showing that the coefficient of x^{k} is the same on both sides for every $k=0, \ldots, p$.
[Proof:]
$(x+1)^{p}=\sum_{k=0}^{p}\binom{p}{k} x^{k}=1+x^{p}+\sum_{k=1}^{p-1}\binom{p}{k} x^{k} \equiv 1+x^{p}+\sum_{k=1}^{p-1} 0 x^{k}(\bmod p)=1+x^{p}(\bmod$ p)
because $\binom{p}{k}$ has a factor of p in it when $0<k<p$.
(b) Show that $x^{p} \equiv x(\bmod p)$ by induction over x.
[Proof:]
First, we must show the base case is true for $x=0: 0^{p} \equiv 0(\bmod p) . \checkmark$
Second, we must prove the inductive case. Assume that $x^{p} \equiv x(\bmod p)$. Then, from part (a) we know that:

$$
(x+1)^{p} \equiv x^{p}+1(\bmod p) \equiv(x)+1(\bmod p) \equiv(x+1)(\bmod p)
$$

Thus, by induction, we have shown that $x^{p} \equiv x(\bmod p)$ for every integer x
15. Let p be an odd prime. Expand $(x-y)^{p-1}$, reducing the coefficients mod p.
[Solution: $(x-y)^{p-1} \equiv \sum_{k=0}^{p-1} x^{p-1-k} y^{k}(\bmod p)$]
First of all, we know that

$$
(x-y)^{p-1}=\sum_{k=0}^{p-1}\binom{p-1}{k} x^{p-1-k}(-y)^{k}=\sum_{k=0}^{p-1} \frac{(p-1)!}{k!(p-1-k)!}(-1)^{k} x^{p-1-k} y^{k}
$$

By Wilson's Theorem, we know that $(p-1)!\equiv-1(\bmod p)$.
Also, we can examine $k!$:

$$
\begin{gathered}
k!=(k)(k-1) \ldots(1) \equiv(k-p)(k-1-p) \ldots(1-p)(\bmod p) \\
\equiv(p-k)(p-k+1) \ldots(p-1)(-1)^{k}(\bmod p) \\
\equiv(-1)^{k}(p-1) \ldots(p-(k-1))(p-k)(\bmod p) \\
\Longrightarrow k!(p-1-k)!\equiv(-1)^{k}(p-1) \ldots(p-(k-1))(p-k)(p-1-k)!(\bmod p) \\
\equiv(-1)^{k}(p-1)!(\bmod p) \\
\Longrightarrow k!(p-1-k)!\equiv(-1)^{k}(p-1)!(\bmod p) \\
\Longrightarrow 1 \equiv \frac{(p-1)!}{\Longrightarrow!(p-1-k)!}(-1)^{k}(\bmod p)
\end{gathered}
$$

because k ! and $(p-1-k)$! are relatively prime to p, since p is prime and they have no factors of p. Thus, by substituting, we get that

$$
(x-y)^{p-1}=\sum_{k=0}^{p-1} \frac{(p-1)!}{k!(p-1-k)!}(-1)^{k} x^{p-1-k} y^{k} \equiv \sum_{k=0}^{p-1} x^{p-1-k} y^{k}(\bmod p)
$$

so every coefficient is reduced to 1 in $\bmod p$.

