Fermat's Little Theorem Practice

Joseph Zoller

September 27, 2015

Problems

1. Find $3^{31} \bmod 7$.
2. Find $2^{35} \bmod 7$.
3. Find $128^{129} \bmod 17$.
4. (1972 AHSME 31) The number 2^{1000} is divided by 13 . What is the remainder?
5. Find $29^{25} \bmod 11$.
6. Find $2^{20}+3^{30}+4^{40}+5^{50}+6^{60} \bmod 7$.
7. Let

$$
a_{1}=4, a_{n}=4^{a_{n-1}}, n>1
$$

Find $a_{100} \bmod 7$.
8. Solve the congruence

$$
x^{103} \equiv 4 \bmod 11
$$

9. Find all integers x such that $x^{86} \equiv 6 \bmod 29$.
10. What are the possible periods of the sequence x, x^{2}, x^{3}, \ldots in $\bmod 13$ for different values of x ? Find values of x that achieve these periods.
11. If a googolplex is $10^{10^{100}}$, what day of the week will it be a googolplex days from now? (Today is Sunday)
12. Suppose that p and q are distinct primes, $a^{p} \equiv a(\bmod q)$, and $a^{q} \equiv a(\bmod p)$. Prove that $a^{p q} \equiv a(\bmod p q)$.
13. Find all positive integers x such that $2^{2^{x}+1}+2$ is divisible by 17 .
14. An alternative proof of Fermat's Little Theorem, in two steps:
(a) Show that $(x+1)^{p} \equiv x^{p}+1(\bmod p)$ for every integer x, by showing that the coefficient of x^{k} is the same on both sides for every $k=0, \ldots, p$.
(b) Show that $x^{p} \equiv x(\bmod p)$ by induction over x.
15. Let p be an odd prime. Expand $(x-y)^{p-1}$, reducing the coefficients $\bmod p$.
