Fermat's Little Theorem Practice

Joseph Zoller

September 27, 2015

Problems

- 1. Find $3^{31} \mod 7$.
- 2. Find $2^{35} \mod 7$.
- 3. Find $128^{129} \mod 17$.
- 4. (1972 AHSME 31) The number 2^{1000} is divided by 13. What is the remainder?
- 5. Find $29^{25} \mod 11$.
- 6. Find $2^{20} + 3^{30} + 4^{40} + 5^{50} + 6^{60} \mod 7$.
- 7. Let

$$a_1 = 4$$
, $a_n = 4^{a_{n-1}}$, $n > 1$

Find $a_{100} \mod 7$.

8. Solve the congruence

 $x^{103} \equiv 4 \mod 11.$

- 9. Find all integers x such that $x^{86} \equiv 6 \mod 29$.
- 10. What are the possible periods of the sequence x, x^2, x^3, \dots in mod 13 for different values of x? Find values of x that achieve these periods.
- 11. If a googolplex is $10^{10^{100}}$, what day of the week will it be a googolplex days from now? (Today is Sunday)
- 12. Suppose that p and q are distinct primes, $a^p \equiv a \pmod{q}$, and $a^q \equiv a \pmod{p}$. Prove that $a^{pq} \equiv a \pmod{pq}$.
- 13. Find all positive integers x such that $2^{2^{x}+1} + 2$ is divisible by 17.
- 14. An alternative proof of Fermat's Little Theorem, in two steps:
 - (a) Show that $(x + 1)^p \equiv x^p + 1 \pmod{p}$ for every integer x, by showing that the coefficient of x^k is the same on both sides for every k = 0, ..., p.
 - (b) Show that $x^p \equiv x \pmod{p}$ by induction over x.
- 15. Let p be an odd prime. Expand $(x y)^{p-1}$, reducing the coefficients mod p.