Number Theory

Theory of Divisors

Misha Lavrov

ARML Practice 9/29/2013

Warm-up

HMMT 2008/2. Find the smallest positive integer n such that $107 n$ has the same last two digits as n.

IMO 2002/4. Let n be an integer greater than 1 . The positive divisors of n are $d_{1}, d_{2}, \ldots, d_{k}$, where

$$
1=d_{1}<d_{2}<\cdots<d_{k}=n .
$$

Define $D=d_{1} d_{2}+d_{2} d_{3}+\cdots+d_{k-1} d_{k}$.
(a) Prove that $D<n^{2}$.
(b) Determine all n for which D is a divisor of n^{2}.

Warm-up

Solutions

(1) Two numbers have the same last two digits just when they are the same mod 100, and

$$
\begin{aligned}
n \equiv 107 n(\bmod 100) & \Leftrightarrow n \equiv 7 n(\bmod 100) \\
& \Leftrightarrow 6 n \equiv 0(\bmod 100) \\
& \Leftrightarrow 6 n=100 k \text { for some } k \\
& \Leftrightarrow n=50 \cdot \frac{k}{3} .
\end{aligned}
$$

So n must be a multiple of 50 , and the smallest such positive number is 50 itself.
(2) The IMO problem is left as an exercise.

Divisors of 10000

- We can arrange the divisors of 10000 in a square grid:

1	2	4	8	16
5	10	20	40	80
25	50	100	200	40
125	250	500	1000	2000
625	1250	2500	5000	10000

Divisors of 10000

- We can arrange the divisors of 10000 in a square grid:

1	2	4	8	16
5	10	20	40	80
25	50	100	200	40
125	250	500	1000	2000
625	1250	2500	5000	10000

- Questions:
- How many divisors of 10000 are divisors of 200 ?
- What is the sum of all the divisors of 10000? (Try to figure out how to avoid using brute force.)
- How many divisors does 10^{100} have?
- How many divisors does 3600 have?

Competition-level questions

AIME $1998 / 5$. If a random divisor of 10^{99} is chosen, what is the probability that it is a multiple of 10^{88} ?

PUMaC 2011/NT A1. The only prime factors of an integer n are 2 and 3. If the sum of the divisors of n (including n itself) is 1815 , find n.

Original. How many divisors x of 10^{100} have the property that the number of divisors of x is also a divisor of 10^{100} ?

Competition-level questions

Solutions

AIME 1998/5. The divisors of 10^{99} form a 100×100 grid. In the grid, the multiples of 10^{88} are the numbers below and to the right of 10^{88}, which form a 12×12 grid. So the probability is

$$
\frac{12 \cdot 12}{100 \cdot 100}=0.0144
$$

Competition-level questions

Solutions

AIME 1998/5. The divisors of 10^{99} form a 100×100 grid. In the grid, the multiples of 10^{88} are the numbers below and to the right of 10^{88}, which form a 12×12 grid. So the probability is

$$
\frac{12 \cdot 12}{100 \cdot 100}=0.0144
$$

PUMaC 2011/NT A1. First note that 1815 factors as $3 \cdot 5 \cdot 11^{2}$.
If $n=2^{a} \cdot 3^{b}$, the sum of its divisors is

$$
\left(1+2+4+\cdots+2^{a}\right)\left(1+3+9+\cdots+3^{b}\right)
$$

The sums of powers of 2 begin $1,3,7,15,31, \ldots$ and the sums of powers of 3 begin $1,4,13,40,121, \ldots$. At this point we spot that $15 \cdot 121=1815$. This is $1+2+4+8$ times $1+3+9+27+81$, so n is $8 \cdot 81=648$.

Competition-level questions

Solutions

Original. Since $10^{100}=2^{100} \cdot 5^{100}, x$ must also be of the form $2^{a} \cdot 5^{b}$, where $0 \leq a \leq 100$ and $0 \leq b \leq 100$.

The divisors of x form their own grid, with $a+1$ columns (there are $a+1$ choices for the power of 2 , namely $2^{0}, 2^{1}, 2^{2}, \ldots, 2^{a}$) and $b+1$ rows (there are $b+1$ choices for the power of 5). The total number of divisors of x is $(a+1)(b+1)$.

If this number is also a divisor of 10^{100}, then both $a+1$ and $b+1$ must be products of 2's and 5's. There are no further restrictions on x. So $a+1$ and $b+1$ can each be one of:

$$
1,2,4,8,16,32,64, \quad 5,10,20,40,80, \quad 25,50,100 .
$$

There are 15 possibilities for a and for b, so there are $15^{2}=225$ possibilities for x.

Taking equations mod n

Pythagorean triples

Problem

If x, y, z are integers and $x^{2}+y^{2}=z^{2}$, show that 60 divides $x y z$.

Taking equations mod n

Pythagorean triples

Problem

If x, y, z are integers and $x^{2}+y^{2}=z^{2}$, show that 60 divides $x y z$.

- All three of x, y, z cannot be odd, since odd + odd $=$ even. So $x y z$ is even.

Taking equations mod n

Pythagorean triples

Problem

If x, y, z are integers and $x^{2}+y^{2}=z^{2}$, show that 60 divides $x y z$.

- All three of x, y, z cannot be odd, since odd + odd $=$ even. So $x y z$ is even.
- Since $1^{2} \equiv 2^{2} \equiv 1(\bmod 3)$, all perfect squares are 0 or 1 $\bmod 3$. But $x^{2}+y^{2} \equiv z^{2}(\bmod 3)$ is not solved by making each of x^{2}, y^{2}, and z^{2} be $1 \bmod 3$. So one is $0 \bmod 3$, and so $x y z$ is divisible by 3 .

Taking equations mod n

Pythagorean triples

Problem

If x, y, z are integers and $x^{2}+y^{2}=z^{2}$, show that 60 divides $x y z$.

- All three of x, y, z cannot be odd, since odd + odd $=$ even. So $x y z$ is even.
- Since $1^{2} \equiv 2^{2} \equiv 1(\bmod 3)$, all perfect squares are 0 or 1 $\bmod 3$. But $x^{2}+y^{2} \equiv z^{2}(\bmod 3)$ is not solved by making each of x^{2}, y^{2}, and z^{2} be $1 \bmod 3$. So one is $0 \bmod 3$, and so $x y z$ is divisible by 3 .
- Mod 5 , we have $1^{2} \equiv 4^{2} \equiv 1$ and $2^{2} \equiv 3^{2} \equiv-1$. So $x^{2}+y^{2} \equiv z^{2}(\bmod 5)$ can look like $0 \pm 1 \equiv \pm 1$ or $1-1 \equiv 0$. So one of x, y, or z is $0 \bmod 5$, and $x y z$ is divisible by 5 .

Taking equations mod n

Pythagorean triples

Problem

If x, y, z are integers and $x^{2}+y^{2}=z^{2}$, show that 60 divides $x y z$.

- All three of x, y, z cannot be odd, since odd + odd $=$ even. So $x y z$ is even.
- Since $1^{2} \equiv 2^{2} \equiv 1(\bmod 3)$, all perfect squares are 0 or 1 $\bmod 3$. But $x^{2}+y^{2} \equiv z^{2}(\bmod 3)$ is not solved by making each of x^{2}, y^{2}, and z^{2} be $1 \bmod 3$. So one is $0 \bmod 3$, and so $x y z$ is divisible by 3 .
- Mod 5 , we have $1^{2} \equiv 4^{2} \equiv 1$ and $2^{2} \equiv 3^{2} \equiv-1$. So $x^{2}+y^{2} \equiv z^{2}(\bmod 5)$ can look like $0 \pm 1 \equiv \pm 1$ or $1-1 \equiv 0$. So one of x, y, or z is $0 \bmod 5$, and $x y z$ is divisible by 5 .
- These mean xyz is divisible by 30 . Getting 60 is left as an exercise (Hint: try mod 8.)

Taking equations mod n

Competition-level problems

Original. If x, y, z are integers and $x^{2}+y^{2}=3 z^{2}$, show that $x=y=z=0$.

PUMaC 2007/NT B2. How many positive integers n are there such that $n+2$ divides $(n+18)^{2}$?

British MO 2005/6. Let n be an integer greater than 6 . Prove that if $n-1$ and $n+1$ are both prime, then $n^{2}\left(n^{2}+16\right)$ is divisible by 720 .

PUMaC 2009/NT A3. Find all prime numbers p which can be written as $p=a^{4}+b^{4}+c^{4}-3$ for some primes (not necessarily distinct) a, b, and c.

Taking equations mod n

Competition-level problems

Original. If x, y, z are integers and $x^{2}+y^{2}=3 z^{2}$, show that $x=y=z=0$. (Hint: $\bmod 3$)

PUMaC 2007/NT B2. How many positive integers n are there such that $n+2$ divides $(n+18)^{2}$? (Hint: $\left.\bmod n+2\right)$

British MO 2005/6. Let n be an integer greater than 6. Prove that if $n-1$ and $n+1$ are both prime, then $n^{2}\left(n^{2}+16\right)$ is divisible by 720 . (Hint: $\bmod 2,3$, and 5)

PUMaC 2009/NT A3. Find all prime numbers p which can be written as $p=a^{4}+b^{4}+c^{4}-3$ for some primes (not necessarily distinct) a, b, and c. (Hint: mod 2, 3, and 5)

Taking equations mod n

Solutions

Original. If $x^{2}+y^{2}=3 z^{2}$, then $x^{2}+y^{2} \equiv 0(\bmod 3)$, which is only possible if $x \equiv y \equiv 0(\bmod 3)$. So both x and y are divisible by 3 , so $x^{2}+y^{2}$ is divisible by 9 , and therefore z^{2} is divisible by 3 .

We now have $(x / 3)^{2}+(y / 3)^{2}=3(z / 3)^{2}$, so the same is true of $x / 3, y / 3, z / 3$. But the numbers cannot have infinitely many factors of 3 unless they are all 0 .

Taking equations mod n
 Solutions

Original. If $x^{2}+y^{2}=3 z^{2}$, then $x^{2}+y^{2} \equiv 0(\bmod 3)$, which is only possible if $x \equiv y \equiv 0(\bmod 3)$. So both x and y are divisible by 3 , so $x^{2}+y^{2}$ is divisible by 9 , and therefore z^{2} is divisible by 3 .

We now have $(x / 3)^{2}+(y / 3)^{2}=3(z / 3)^{2}$, so the same is true of $x / 3, y / 3, z / 3$. But the numbers cannot have infinitely many factors of 3 unless they are all 0 .

PUMaC 2007/NT B2. Since $n+18 \equiv 16(\bmod n+2)$, $(n+18)^{2} \equiv 16^{2}(\bmod n+2)$ We are given $(n+18)^{2} \equiv 0$ $(\bmod n+2)$, so $16^{2} \equiv 0(\bmod n+2)$, which means $n+2$ divides 256 . Therefore $n+2$ is one of $2^{2}, 2^{3}, \ldots, 2^{8}$, which gives 7 solutions.

Taking equations mod n

Solutions

BMO 2005/6. Divisibility by 144 is easy. Neither $n+1$ nor $n-1$ is even, so n must be even; and neither $n+1$ nor $n-1$ is divisible by 3 , so n must be divisible by 3 . Therefore $n=6 k$, and

$$
n^{2}\left(n^{2}+16\right)=(6 k)^{2}\left((6 k)^{2}+16\right)=144 \cdot k^{2}\left(9 k^{2}+4\right) .
$$

Now all we need is divisibility by 5 . Since neither $n+1$ nor $n-1$ is divisible by 5 , we have one of $n \equiv 0,2,3(\bmod 5)$. Fortunately,

$$
\begin{cases}0^{2}\left(0^{2}+16\right)=0 \equiv 0 & (\bmod 5) \\ 2^{2}\left(2^{2}+16\right)=80 \equiv 0 & (\bmod 5) \\ 3^{2}\left(3^{2}+16\right)=225 \equiv 0 & (\bmod 5)\end{cases}
$$

So in all three cases, $n^{2}\left(n^{2}+16\right)$ is divisible by 5 .

Taking equations mod n

Solutions

PUMaC 2009/NT A3. The primes 2, 3, and 5 have the following property: if p is one of 2,3 , or 5 , then either $a \equiv 0(\bmod p)$ or $a^{4} \equiv 1(\bmod p)$. This is easy to check:

$$
\begin{cases}1^{4} \equiv 1 & (\bmod 2) \\ 1^{4} \equiv 2^{4} \equiv 1 & (\bmod 3) \\ 1^{4} \equiv 2^{4} \equiv 3^{4} \equiv 4^{4} \equiv 1 & (\bmod 5)\end{cases}
$$

Suppose none of a, b, or c are 2. They are prime, so not divisible by 2. But then

$$
p=a^{4}+b^{4}+c^{4}-3 \equiv 1+1+1-3 \equiv 0 \quad(\bmod 2)
$$

and p is divisible by 2 (but it's easy to check $p=2$ doesn't work). So one of a, b, or c has to be 2 .

The same argument shows that one of a, b, or c has to be 3 , and one has to be 5 . This means $p=2^{4}+3^{4}+5^{4}-3=719$,

