◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Number Theory

Theory of Divisors

Misha Lavrov

ARML Practice 9/29/2013

Warm-up

HMMT 2008/2. Find the smallest positive integer n such that 107n has the same last two digits as n.

IMO 2002/4. Let *n* be an integer greater than 1. The positive divisors of *n* are d_1, d_2, \ldots, d_k , where

$$1 = d_1 < d_2 < \cdots < d_k = n.$$

Define $D = d_1 d_2 + d_2 d_3 + \cdots + d_{k-1} d_k$.

(a) Prove that $D < n^2$.

(b) Determine all *n* for which *D* is a divisor of n^2 .

Warm-up Solutions

Two numbers have the same last two digits just when they are the same mod 100, and

$$n \equiv 107n \pmod{100} \Leftrightarrow n \equiv 7n \pmod{100}$$
$$\Leftrightarrow 6n \equiv 0 \pmod{100}$$
$$\Leftrightarrow 6n = 100k \text{ for some } k$$
$$\Leftrightarrow n = 50 \cdot \frac{k}{3}.$$

So n must be a multiple of 50, and the smallest such positive number is 50 itself.

Intel IMO problem is left as an exercise.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Divisors of 10000

• We can arrange the divisors of 10000 in a square grid:

1	2	4	8	16
5	10	20	40	80
25	50	100	200	40
125	250	500	1000	2000
625	1250	2500	5000	10000

Divisors of 10000

• We can arrange the divisors of 10000 in a square grid:

1	2	4	8	16
5	10	20	40	80
25	50	100	200	40
125	250	500	1000	2000
625	1250	2500	5000	10000

- Questions:
 - How many divisors of 10000 are divisors of 200?
 - What is the sum of all the divisors of 10000? (Try to figure out how to avoid using brute force.)
 - How many divisors does 10¹⁰⁰ have?
 - How many divisors does 3600 have?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Competition-level questions

AIME 1998/5. If a random divisor of 10^{99} is chosen, what is the probability that it is a multiple of 10^{88} ?

PUMaC 2011/NT A1. The only prime factors of an integer n are 2 and 3. If the sum of the divisors of n (including n itself) is 1815, find n.

Original. How many divisors x of 10^{100} have the property that the number of divisors of x is also a divisor of 10^{100} ?

Competition-level questions Solutions

AIME 1998/5. The divisors of 10^{99} form a 100×100 grid. In the grid, the multiples of 10^{88} are the numbers below and to the right of 10^{88} , which form a 12×12 grid. So the probability is

 $\frac{12\cdot 12}{100\cdot 100} = 0.0144.$

Competition-level questions Solutions

AIME 1998/5. The divisors of 10^{99} form a 100×100 grid. In the grid, the multiples of 10^{88} are the numbers below and to the right of 10^{88} , which form a 12×12 grid. So the probability is

$$\frac{12 \cdot 12}{100 \cdot 100} = 0.0144.$$

PUMaC 2011/NT A1. First note that 1815 factors as $3 \cdot 5 \cdot 11^2$. If $n = 2^a \cdot 3^b$, the sum of its divisors is

$$(1+2+4+\cdots+2^{a})(1+3+9+\cdots+3^{b}).$$

The sums of powers of 2 begin 1, 3, 7, 15, 31, ... and the sums of powers of 3 begin 1, 4, 13, 40, 121, ... At this point we spot that $15 \cdot 121 = 1815$. This is 1 + 2 + 4 + 8 times 1 + 3 + 9 + 27 + 81, so *n* is $8 \cdot 81 = 648$.

Competition-level questions Solutions

Original. Since $10^{100} = 2^{100} \cdot 5^{100}$, x must also be of the form $2^a \cdot 5^b$, where $0 \le a \le 100$ and $0 \le b \le 100$.

The divisors of x form their own grid, with a + 1 columns (there are a + 1 choices for the power of 2, namely $2^0, 2^1, 2^2, \ldots, 2^a$) and b + 1 rows (there are b + 1 choices for the power of 5). The total number of divisors of x is (a + 1)(b + 1).

If this number is also a divisor of 10^{100} , then both a + 1 and b + 1 must be products of 2's and 5's. There are no further restrictions on x. So a + 1 and b + 1 can each be one of:

1, 2, 4, 8, 16, 32, 64, 5, 10, 20, 40, 80, 25, 50, 100.

There are 15 possibilities for *a* and for *b*, so there are $15^2 = 225$ possibilities for *x*.

Taking equations mod *n* Pythagorean triples

Problem

Taking equations mod *n* Pythagorean triples

Problem

If x, y, z are integers and $x^2 + y^2 = z^2$, show that 60 divides xyz.

All three of x, y, z cannot be odd, since odd + odd = even.
 So xyz is even.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Taking equations mod *n* Pythagorean triples

Problem

- All three of *x*, *y*, *z* cannot be odd, since odd + odd = even. So *xyz* is even.
- Since 1² ≡ 2² ≡ 1 (mod 3), all perfect squares are 0 or 1 mod 3. But x² + y² ≡ z² (mod 3) is not solved by making each of x², y², and z² be 1 mod 3. So one is 0 mod 3, and so xyz is divisible by 3.

Taking equations mod *n* Pythagorean triples

Problem

- All three of x, y, z cannot be odd, since odd + odd = even.
 So xyz is even.
- Since 1² ≡ 2² ≡ 1 (mod 3), all perfect squares are 0 or 1 mod 3. But x² + y² ≡ z² (mod 3) is not solved by making each of x², y², and z² be 1 mod 3. So one is 0 mod 3, and so xyz is divisible by 3.
- Mod 5, we have $1^2 \equiv 4^2 \equiv 1$ and $2^2 \equiv 3^2 \equiv -1$. So $x^2 + y^2 \equiv z^2 \pmod{5}$ can look like $0 \pm 1 \equiv \pm 1$ or $1 1 \equiv 0$. So one of x, y, or z is 0 mod 5, and xyz is divisible by 5.

Taking equations mod *n* Pythagorean triples

Problem

- All three of x, y, z cannot be odd, since odd + odd = even.
 So xyz is even.
- Since 1² ≡ 2² ≡ 1 (mod 3), all perfect squares are 0 or 1 mod 3. But x² + y² ≡ z² (mod 3) is not solved by making each of x², y², and z² be 1 mod 3. So one is 0 mod 3, and so xyz is divisible by 3.
- Mod 5, we have $1^2 \equiv 4^2 \equiv 1$ and $2^2 \equiv 3^2 \equiv -1$. So $x^2 + y^2 \equiv z^2 \pmod{5}$ can look like $0 \pm 1 \equiv \pm 1$ or $1 1 \equiv 0$. So one of x, y, or z is 0 mod 5, and xyz is divisible by 5.
- These mean xyz is divisible by 30. Getting 60 is left as an exercise (Hint: try mod 8.)

(日本本語を本書を本書を、「四本」

Taking equations mod *n* Competition-level problems

Original. If x, y, z are integers and $x^2 + y^2 = 3z^2$, show that x = y = z = 0.

PUMaC 2007/NT B2. How many positive integers *n* are there such that n + 2 divides $(n + 18)^2$?

British MO 2005/6. Let *n* be an integer greater than 6. Prove that if n - 1 and n + 1 are both prime, then $n^2(n^2 + 16)$ is divisible by 720.

PUMaC 2009/NT A3. Find all prime numbers p which can be written as $p = a^4 + b^4 + c^4 - 3$ for some primes (not necessarily distinct) a, b, and c.

(日本本語を本書を本書を、「四本」

Taking equations mod *n* Competition-level problems

Original. If x, y, z are integers and $x^2 + y^2 = 3z^2$, show that x = y = z = 0. (Hint: mod 3)

PUMaC 2007/NT B2. How many positive integers *n* are there such that n + 2 divides $(n + 18)^2$? (Hint: mod n + 2)

British MO 2005/6. Let *n* be an integer greater than 6. Prove that if n - 1 and n + 1 are both prime, then $n^2(n^2 + 16)$ is divisible by 720. (Hint: mod 2, 3, and 5)

PUMaC 2009/NT A3. Find all prime numbers p which can be written as $p = a^4 + b^4 + c^4 - 3$ for some primes (not necessarily distinct) a, b, and c. (Hint: mod 2, 3, and 5)

Taking equations mod *n*

Original. If $x^2 + y^2 = 3z^2$, then $x^2 + y^2 \equiv 0 \pmod{3}$, which is only possible if $x \equiv y \equiv 0 \pmod{3}$. So both x and y are divisible by 3, so $x^2 + y^2$ is divisible by 9, and therefore z^2 is divisible by 3.

We now have $(x/3)^2 + (y/3)^2 = 3(z/3)^2$, so the same is true of x/3, y/3, z/3. But the numbers cannot have infinitely many factors of 3 unless they are all 0.

(日本本語を本書を本書を、「四本」

Taking equations mod *n*

Original. If $x^2 + y^2 = 3z^2$, then $x^2 + y^2 \equiv 0 \pmod{3}$, which is only possible if $x \equiv y \equiv 0 \pmod{3}$. So both x and y are divisible by 3, so $x^2 + y^2$ is divisible by 9, and therefore z^2 is divisible by 3.

We now have $(x/3)^2 + (y/3)^2 = 3(z/3)^2$, so the same is true of x/3, y/3, z/3. But the numbers cannot have infinitely many factors of 3 unless they are all 0.

PUMaC 2007/NT B2. Since $n + 18 \equiv 16 \pmod{n+2}$, $(n+18)^2 \equiv 16^2 \pmod{n+2}$ We are given $(n+18)^2 \equiv 0 \pmod{n+2}$, so $16^2 \equiv 0 \pmod{n+2}$, which means n+2 divides 256. Therefore n+2 is one of $2^2, 2^3, \dots, 2^8$, which gives 7 solutions.

Taking equations mod *n*

BMO 2005/6. Divisibility by 144 is easy. Neither n + 1 nor n - 1 is even, so n must be even; and neither n + 1 nor n - 1 is divisible by 3, so n must be divisible by 3. Therefore n = 6k, and

$$n^{2}(n^{2}+16) = (6k)^{2}((6k)^{2}+16) = 144 \cdot k^{2}(9k^{2}+4).$$

Now all we need is divisibility by 5. Since neither n + 1 nor n - 1 is divisible by 5, we have one of $n \equiv 0, 2, 3 \pmod{5}$. Fortunately,

$$\begin{cases} 0^2(0^2+16)=0\equiv 0 \qquad (\text{mod }5)\\ 2^2(2^2+16)=80\equiv 0 \qquad (\text{mod }5)\\ 3^2(3^2+16)=225\equiv 0 \qquad (\text{mod }5). \end{cases}$$

So in all three cases, $n^2(n^2 + 16)$ is divisible by 5.

Taking equations mod *n* Solutions

PUMaC 2009/NT A3. The primes 2, 3, and 5 have the following property: if p is one of 2, 3, or 5, then either $a \equiv 0 \pmod{p}$ or $a^4 \equiv 1 \pmod{p}$. This is easy to check:

 $\begin{cases} 1^4 \equiv 1 & (\text{mod } 2) \\ 1^4 \equiv 2^4 \equiv 1 & (\text{mod } 3) \\ 1^4 \equiv 2^4 \equiv 3^4 \equiv 4^4 \equiv 1 & (\text{mod } 5). \end{cases}$

Suppose none of a, b, or c are 2. They are prime, so not divisible by 2. But then

$$p = a^4 + b^4 + c^4 - 3 \equiv 1 + 1 + 1 - 3 \equiv 0 \pmod{2}$$

and p is divisible by 2 (but it's easy to check p = 2 doesn't work). So one of a, b, or c has to be 2.

The same argument shows that one of *a*, *b*, or *c* has to be 3, and one has to be 5. This means $p = 2^4 + 3^4 + 5^4 - 3 = 719$.