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2.1 Warm-up

1. (ARML 1993) There are several values for a prime p with the property that any five-digit
multiple of p remains a multiple of p if you “rotate the digits”. One such value is 41 (for
example, since 50635 is a multiple of 41, so are 55603, 35506, 63550, and 6355); another
such value is 3. Compute the value of p that is greater than 41.

Rotating the digits takes a number 10a + b to 104b + a. (For example, 50635 = 5063 · 10 + 5
becomes 55603 = 5 · 104 + 5063.) If{

10a + b ≡ 0 (mod p)

a + 104b ≡ 0 (mod p)

then a ≡ −104b (mod p), so 0 ≡ 10a + b ≡ (−105b) + b = (1 − 105)b (mod p), which means
p | (1− 105)b.

The only way to guarantee this is to have p | 105− 1 = 99999. Since 99999 = 32 · 41 · 271, the
solution we’re looking for is p = 271.

2.2 Exponential Diophantine equations

1. Solve over the integers:

(a) 2x − 1 = 3y.

The only solutions are 21 − 1 = 30 and 22 − 1 = 31.

Take the equation modulo 8. We have 32 ≡ 1 (mod 8), so 3y is either 1 or 3 modulo
8. On the other hand, 2x − 1 ≡ 7 (mod 8), assuming x ≥ 3, and 7 is neither 1 nor 3.
Therefore x ≤ 2. Now we try x = 0, x = 1, and x = 2: x = 0 doesn’t work (giving
20 − 1 = 0, not a power of 3) but x = 1 and x = 2 both produce solutions.

(b) 7x + 4 = 3y.

There are no solutions.

Take the equation modulo 3. On the left-hand side, we have 7x+4 ≡ 1x+4 ≡ 2 (mod 3).
On the right-hand side, we have 3y ≡ 0 (mod 3), unless y = 0, in which case 3y ≡ 1
(mod 3), which is still not 2.

(c) 3x + 2 = 5y.

The only solution is 31 + 2 = 51.



Take the equation modulo 9. The powers of 5 modulo 9 are 1, 5, 7, 8, 4, 2, 1, . . . . Assuming
x ≥ 2, the right-hand side is 2 modulo 9, so we must have y ≡ 5 (mod 6).

Now take the equation modulo 7, chosen because 56 ≡ 1 (mod 7). This means 5y =
55 · (56)k ≡ 3 (mod 7), so 3x ≡ 3 − 2 = 1 (mod 7). The powers of 3 modulo 7 are
1, 3, 2, 6, 4, 5, 1, . . . , so we must have x ≡ 0 (mod 6).

In particular, x is even, so 3x = 729x/6. Since 728 = 23 · 7 · 13, we take the equation
modulo 13. On the left-hand side, we get 729x/6 + 2 ≡ 1x/6 + 2 = 3 (mod 13). On the
right-hand side, since 56 ≡ −1 (mod 13), we have 5y ≡ ±55 ≡ ±5 (mod 13), which is
either 5 or 8.

This is a contradiction, so we must have x < 2. Trying x = 0 and x = 1, we find the
only solution.

(d) 2x + 1 = 3y.

The only solutions are 21 + 1 = 31 and 23 + 1 = 32.

Assume y ≥ 2 and take the equation modulo 9. Then we have 2x ≡ −1 (mod 9). The
powers of 2 modulo 9 are 1, 2, 4,−1,−2,−4, 1, . . . , repeating every 6 steps, so x ≡ 3
(mod 6). In particular, x is divisible by 3.

Then we have 2x + 1 = (2x/3)3 + 1 = (2x/3 + 1)(22x/3 − 2x/3 + 1). This is equal to 3y, so
both factors must be powers of 3. In particular, 2x/3 + 1 is a power of 3, so if (x, y) is
a solution to the Diophantine equation and y ≥ 2, there is another solution with x/3 in
place of x. We can keep dividing x by 3 until we descend to a solution with y < 2.

When y = 0 there is no solution, and when y = 1 we get the solution (1, 1). Therefore
all solutions must descend to the (1, 1) solution. This gives us the x = 3 solution found
above, but 29 + 1 is not a power of 3, so we have exhausted all solutions.

(e) 3x + 4y = 5z.

The only solutions are 30 + 41 = 51 and 32 + 42 = 52.

Take the equation modulo 3. We’ll deal with the x = 0 case later; if x > 0, we get
3x + 4y ≡ 0 + 1y (mod 3) on the right, and 5z ≡ (−1)z on the left. This tells us that z
is even.

Now we have 3x = 25z/2−4y = (5z/2 + 2y)(5z/2−2y), so both 5z/2 + 2y and 5z/2−2y are
powers of 3. But their sum is 2 · 5z/2, which is not divisible by 3, so one of the powers
of 3 (the smaller one) must be 30 = 1, and we are left with the equations{

5z/2 + 2y = 3x,

5z/2 − 2y = 1.

Taking the difference, we get 3x−1 = 2y+1. This is the equation in part (d), so we must
have x = y = 2 or y = 0 and x = 1. The first option gives us the (2, 2, 2) solution, and
the second option can’t find a value of z.



It remains to consider the x = 0 case, where we get 4y+1 = 5z. The y = 1 solution we’ve
already found, so assume y ≥ 2 and take the equation mod 8. Since 52 ≡ 1 (mod 8), z
must be even, so we have a difference of squares once again: (5z/2 + 2y)(5z/2 − 2y) = 1.
But this is impossible to satisfy, since the factors can’t both be 1 or both -1, so there
are no further solutions to be found.

2. Find all positive integers x and y such that 2x + 3y is a perfect square.

The only solutions are 20 + 31 = 4, 23 + 30 = 9, and 24 + 32 = 25.

Try y = 0. Then 2x + 1 = k2 for some k, so 2x = k2−1 = (k+ 1)(k−1). This is only possible
when k − 1 = 2 and k + 1 = 4, giving us one of the solutions.

Otherwise, y > 0, so we have (−1)x + 0 ≡ k2 (mod 3). But k2 can only be 0 or 1 modulo 3,
so x must be even. Then we have a difference of squares:

3y = (k + 2x/2)(k − 2x/2).

So both k + 2x/2 and k − 2x/2 are powers of 3. But their difference is 2x/2+1, which is not
divisible by 3. Therefore k − 2x/2 = 30 = 1. Solving for k, we get k = 2x/2 + 1, so

2x + 3y = (2x/2 + 1)2 = 2x + 2x/2+1 + 1.

This means that 3y = 2x/2+1 + 1, which has only two solutions, by problem 1(d). We can
have x/2 + 1 = y = 1, giving 20 + 31 = 4, or x/2 + 1 = 3 and y = 2, giving us 24 + 32 = 25.

3. (BMO 1981) Find the smallest positive value of |12m− 5n|, where m, n are positive integers.

Clearly, |121 − 51| = 7 is achievable. Is any smaller value possible? We have 12m − 5n ≡
0m − 1n ≡ 1 (mod 2), 12m − 5n ≡ 0m − (−1)n 6≡ 0 (mod 3), and 12m − 5n ≡ 2m − 0n 6≡ 0
(mod 5), which rules out 2, 3, 4, 5, and 6. So it remains to check if there are any solutions
to 12m − 5n = ±1.

Taking the equation modulo 4, we get 0m−1n ≡ ±1 (mod 4), so the 1 must be negative, and
we have 5n − 12m = 1.

Taking the equation modulo 3, we ge (−1)n − 0m ≡ 1 (mod 3), so n must be even.

Taking the equation modulo 5, we get 0n− 2m ≡ 1 (mod 5), which is possible only for m ≡ 2
(mod 4). So m must be even as well.

But now we have the difference of squares (5n/2)2 − (12m/2)2 = 1, which factors as (5n/2 −
12m/2)(5n/2 + 12m/2) = 1. So both factors must be 1 or else both -1, which is impossible as
12m/2 > 0.

So an absolute difference of 1 is rulled out, and the smallest achievable value is 7.



2.3 Other Diophantine equations

1. Show that there are no integer solutions to x3 + y3 + z3 = 400.

Take the equation modulo 9. It’s easy to check that all perfect cubes are 0, 1, or -1 modulo
9, so the remainder modulo 9 of x3 + y3 + z3 can be any of {−3,−2,−1, 0, 1, 2, 3}. However,
400 ≡ 4 (mod 9).

2. (PUMaC 2009) Find all prime numbers p which can be written as p = a4 + b4 + c4 − 3 for
some primes a, b, and c (not necessarily distinct).

Write the right-hand side as (a4− 1) + (b4− 1) + (c4− 1). We have x4− 1 ≡ 0 (mod 2) unless
x is even, x4 − 1 ≡ 0 (mod 3) unless x ≡ 0 (mod 3), and x4 − 1 ≡ 0 (mod 5) unless x ≡ 0
(mod 5).

Therefore a4 + b4 + c4− 3 ≡ 0 (mod 2) unless a, b, or c is 2; it is divisible by 3 unless a, b, or
c is 3; and it is divisible by 5 unless a, b, or c is 5. We can check that p = 2, p = 3, and p = 5
are too small to be a solution, so the only possibility is p = 24 + 34 + 54 − 3 = 719, which is
indeed prime.

3. (USAMO 1979) Determine all non-negative integer solutions, apart from permutations, of
the equation

n4
1 + n4

2 + · · ·+ n4
14 = 1599.

Modulo 16, any perfect fourth power is either 0 or 1, so the sum on the right-hand side can
be anything from 0 to 14 modulo 16. But 1599 = 1600− 1, so it is 15 modulo 16, and there
are no solutions.

4. Find all integer solutions to x2 + 2x = y2.

The only solutions are 02 + 20 = 12 and 62 + 26 = 102.

We have 2x = y2 − x2 = (y + x)(y − x), so both y + x and y − x are powers of 2. Write
y + x = 2i and y − x = 2j ; we have x = 2i−1 − 2j−1. The equation 2x = y2 − x2 becomes

22
i−1−2j−1

= 2i+j

so 2i−1 − 2j−1 = i + j.

Since i > j, we have 2i−1 − 2j−1 ≥ 2i−2, while i + j < 2i. Thus, 2i−2 < 2i, which means
i > 2i−3. This is true only for i ≤ 5: the right-hand side grows much faster than the left.
Checking all values 0 ≤ j ≤ i ≤ 5, we only find the two solutions above.

5. Show that for any integers x, y ≥ 2,∣∣∣∣∣∣222
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Almost any modulus will work. Modulo 100, the power tower of 2’s will eventually stabilize
at 36, and the power tower of 3’s at 87, giving a lower bound of 49. It then suffices to check
that no small values of x and y do better than 33 − 22

2
= 11.


